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ABSTRACT

This paper deals with the basic principles of the deterministic discontinuum mechanics and its application to the
simplification of the Burmister’s problem. For this purpose, the soil is modeled as a Bravais isometric lattice that is
governed by the mean value principle, which is stated as the identity between a quantity at a homologous point and the
mean value of the quantities at the neighboring nodes, located within the polyhedron of influence. Particularly,
consistently with the result of the isotropic continuum mechanics, the biharmonic equation is obtained by averaging a
stress function of the Kirchhoff’'s kind. But the discrete nature of the discontinuous medium allows the simplification of
the problem even more, by considering a partial or biased polyhedron. Taking advantage of this property, expressions for
displacements, stresses and strains in a multilayer system, subjected to a uniformly distributed vertical load applied over
the surface, are derived; which, compared to the Burmister’s results, are sufficiently rigorous, explicit, elementary, simple
and accessible to the practical engineer.

RESUMEN

Este articulo trata de los principios basicos de la mecanica deterministica del medio discontinuo y su aplicacién a la
simplificacion del problema de Burmister. Con este propésito, el suelo es modelado como una red tridimensional
isométrica de Bravais, que es gobernada por el principio del valor medio, el cual se define como la identidad entre una
cantidad correspondiente a un punto homaélogo y el promedio de las cantidades correspondientes a los nodos vecinos,
localizados dentro del poliedro de influencia. Particularmente, en concordancia con el resultado de la mecanica del
medio continuo isotrépico, la promediaciéon de una funcién del esfuerzo del tipo de Kirchhoff conduce a la ecuacion
biharmoénica. Pero la naturaleza discreta del medio discontinuo permite la simplificacion del problema adn mas,
considerando un poliedro parcial o sesgado. Aprovechando esta propiedad, se derivan expresiones para los
desplazamientos, esfuerzos y deformaciones en un sistema multicapa sometido a una carga vertical uniformemente
distribuida sobre la superficie, las cuales, en comparacion con los resultados de Burmister, son suficientemente
rigurosas, explicitas, elementales, simples y accesibles al ingeniero practico.

1 INTRODUCTION crystallographic description of granular packings, a

simpler and more applicable theory has been raised,

The stress distribution in a discontinuous substance is of
greater complexity, because it depends not only on their
structure but also on the nature of the contact forces,
which can exhibit high hyperstaticity. Historically, Trollope
(1956) was the first to calculate the stresses caused by
the self-weight of a two-dimensional dense and orderly
ensemble, consisting of ellipses in contact, overcoming
the static indeterminacy by means of a coefficient of
arching. When these equations are written in a compact
fashion, it becomes clear that the stress components
satisfy the wave equation (Yanqui 1980), being in the
middle of the elliptical nature of the theory of elasticity and
the higher hyperbolic character of the theory of plasticity.
Moreover, the principle of the Trollope’s centroidal
reactions has been used to calculate the stresses caused
by the self-weight of an N-dimensional jointed rock mass,
and to calibrate the strength parameters of granular soils
(Yanqui 1982).

Currently, several theories have been developed to
describe the stress transmission mechanism in granular
media, based on the statistical mechanics (e.g. Aste et al.
2002, Bouchaud 2002), which takes into account the
randomness of the grain distribution and the contact
forces. Alternatively, in concordance with the

based on the so-called principle of the mean value
(Yanqui, 1995), whose target is the stress function rather
than the contact force. Furthermore, since this principle
can be arbitrarily biased, solutions of different levels of
accuracy can be established. The simplified mechanics of
a layered discontinuum is an example of application of
this methodology.

2 DISCONTINUUM MECHANICS
2.1. The structure of the ideal matter

All natural substances are discontinuous because they
are made of particles and voids. In this context, a particle
is defined as a unit of matter, such as a block in rock
masses, a grain in soils, a mineral in rocks, a molecule in
crystals, and so forth. The assemblage of these units is
multiscale and multiphase and may be in a nearly ordered
pattern or in a random way. But the discontinuum is the
ideal arrangement of homogeneous individual particles
connected by some kind of contact. This idealization of
the natural substances may be attained as a spatial lattice
or as a random distribution of particles. In the first case,



the methods of the Crystallography are to be applied,
regarding its high theoretical development (e.g. Klein and
Hurlbut, 1996). In the second case, methods of the
statistical mechanics may be applied (e.g. Aste 1996).

Figure 1. Plan and front views of the hexaoctahedron as
an example of natural domain of influence, D, for a cubic
or isometric spatial lattice.

X

Figure 2. The homologous point r and the neighboring
point r; as the basis to calculate the mean value in a
discontinuum.

A lattice is an infinite array of points in regularly and
symmetrically way (Fig. 1). In this context, a point
represents any thing, such as a particle or a void. In the
whole, the lattice is homogeneous because any of its
parts is neither worse nor better than all the other parts,
so that its points are called homologous points. Likewise,
the lattice is discrete and inherently anisotropic because it
is made of individual points. As early as 1848, Bravais,

showed that symmetry restricts the number of possible
lattices to fourteen physically admissible arrays, grouped
from the lower to the higher symmetry in ftriclinic,
monoclinic, rhombic, tetragonal, hexagonal, and cubic or
isometric.

To emphasise the discrete character of the lattice, it is
customary to write the local or cell position vector of any
homologous point, a, in terms of the three vectors, b1, by,
and bz, defined by the distance from one homologous
point to the nearest neighbouring homologous points, and
called the basic vectors. In Cartesian tensor notation:
a= mib;, where m; are the integer Miller indices. However,
for the discontinuum analysis, the cell position vector a
shall be defined in terms of the Cartesian unit vectors as
ai=ajij, being a; proportional to m;. In a general Cartesian
coordinates system, the position vector of a point i, with
respect to a known point, is written as r; = r + a;, (Fig. 2).

2.2. The mean value principle

When the law that governs some phenomenon is
unknown, or it is so complicated that is not suitable for
practical application, the function or quantity f = f(r) may
be assessed by applying the principle of the mean value,
that states that the quantity or function f is equal to the
average of all quantities or fuctions fi =f(r;j) given in a
certain space, called the natural domain of influence of
the homologous point r. Thus,

fr)=6r) [1]

The domain of influence can be defined as one of the
Curie’s limit groups of symmetry, and is a polyhedron
because of the discrete nature of the lattice (Fig. 1). The
function f(r;) = f(r+aj) can be expanded as a Taylor's
series, in which odd terms become zero due to the
symmetry of the lattice and terms of the higher order may
be discarded. So that, the equation of the mean value (1)
takes the form (Uxdk)f = 0; where Uy is the second-rank
metric tensor of the polyhedron of influence D, and the
expression in parenthesis, the generalized Laplacian
operator. As long as this tensor is symmetric, there are
three principal directions, upon which the coefficients uj,
for j#k, disappear.

When the value of the function f(r) does not coincide
with the mean value of f(r;), there is a difference between
them, known in statistics as the mean deviation, that is
given by 0 = (Ujkazjk)f . But & = 8(r) may be considered
itself as a function of state, and may be determined by
means of the mean value as (Ujka2jk)6 = 0. So that, an
equation of higher approximation for the function f is
established: (Ujkazjk)2f=(Uijrsa4rsjk)f=O. By repeating this
reasoning, the equation of the mean value of order n is
achieved as

2\,
(ojkajk) f20 2]

where the metric tensor of the polyhedron of influence,
made of N points, is given by the expression:
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Equation (2) describes the distribution of the quantity f
in natural orderly matter and overcomes the undesirable
dual approach to describe it (e.g. Sirotin and
Shaskolskaya, 1982). Up to now, matter was considered
inherently discontinuous in discussing its internal
structure, but continuous when describing the physical
laws that govern its behavior. In this path, it should be
noted that the averaging of the first order in an isometric
discontinuous substance becomes the Laplace’s
equation: Pudf = 0, that describes the behavior of an
isotropic matter since it does not depend on the metric
tensor of the lattice.

2.3. The biased mean value

As long as a discontinuous matter is made of discrete
units, it is possible to obtain approximate but simpler
solutions to a boundary value problem, considering a
partial or biased domain of influence, B, consisting of a
set of points chosen conveniently (Yanqui 2008).
Statistically, B is a sample of the population D, and,
because of this, the function of state can be only
assessed by an estimator, which hereafter shall be
denoted by g = g(r). Two features are important in
applying the mean value principle to this estimator. One is
the modification of the average metric tensor because
there are a deficient number of points within the influence
domain, B, and the other is the establishment of a rule to
calculate g, by knowing that it does not fulfil the
requirements of the principle of the mean value. Namely,
if the average of the values of the estimator inside B, is
bigger than g, there is an error e in the estimation of g by
means of g, at every point r. So that, the function g can
be attained correcting the mean value G. According to the
kind of error, the principle of the mean value is stated as
g =4 - e, for an error independent of g, or aszg =3 -eqQ,
for a systematic error. For the first case, Uxd°g = e, and
for the second case, (U x8%)g = esg, or, in symbolic way:
(0x8°k — €s)g = 0, where { x is given by the equation (3),
provided that the number of points involved are N.

The arguments put forward for the function of state, f,
with respect to the principle of the mean value of higher
order, are completely valid for the function of estimation g.
Applying n times this operation, the differential equation of
the biased mean value of order n is written as

2. n
(ija jk—es) g=0 [4]

For instance, if the biased domain of influence is made
of the points in the OXY plane, the only non vanishing
components of the metric tensor for an isotropic medium
are U1 = U2 = 0; then, the equation of the mean value
for the estimator g attains the hyperbolic fashion: (A-
82)”g=0, where A is the two-dimensional Laplacian
operator, and 82 = es/U , the factor of correction.

3 STRESSES IN ISOMETRIC DISCONTINUUM

For an isometric lattice, the mean value of the second
order yields the biharmonic equation. Thus,

(a&k )Zf -0 [5]

This equation has been used to solve the problem on
the semi-infinite medium by Boussinesq (1885), as well as
the problem on the layered system by Burmister (1943),
both in a full rigorous fashion. But, even in the simplest
case of a uniformly distributed loading over a circular
area, the solution is too complicated. So that, for the sake
of practical usefulness, a solution approximate but
rigorous enough should be looked for. As one of the most
elementary approximations, it is considered an influence
domain, biased in the three Cartesian directions not only
with respect to the gathering of the homologous points but
also with respect to the Hooke's law, that are written as

o, =Ke

Oy = st ; y y 0z= Ksz [6]

3.1 Biased displacements and stresses

The principle of the mean value and, even more, the
biased dominium of influence are statistical tools that
allow the deduction of several expressions for the same
phenomenon. In this case, a stress function of the
Kirchhoff’s kind, which coincides with the modified stress
function of the Love’s kind, is chosen to be used, because
it satisfies the differential equations of equilibrium, the
compatibility conditions and the Hooke’s law, biased in
the three Cartesian directions. Hence:
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3.2 Method of separation of variables

If the stress function is given by the expression g = Z¢
=Z(z)p(x,y), the biharmonic equation may be simplified to
the following much simpler differential equations:

ZV —2p?Z"+ptz=0 [16]
Ag =-B%¢ [17]
Ao =B [18]

which can be achieved also by separately application of
the principle of the mean value to each variable Z(z) and
@(x,y). As mentioned before, these operations are
possible only because of the discrete nature of the lattice.
The first equation is accomplished by applying the mean
value principle of the second order to a biased domain of
influence made of a vertical row of particles. The other
two equations are obtained by virtue of the mean value
principle of the first and the second order, respectively,
applied to a horizontal net of particles. In both cases, the
error of estimation is considered systematic. Substitution
of the separable variables into equations (7) to (15) yields
the following expressions for the displacement vector and
the stress tensor:

u=-z" [19]
OX
v=—z"% [20]
oy
1, o 025 it p2
W= 27222 Mo Z7-28°Z Yo [21]
B
2
oy = kzo"e [22]
8x2
2
oy =Kz 2 [23]
oy
o, = KZA%p =KB2ZAg [24]
2
L0
=Kz 25
“xy OXoy [29]
, 0 ~ 2 ,8([)
1y, =KZ o~ Co) =Kp“Z o~ [26]
.0 ~ 2 ,a(p
tyy =KZ' - Qo) = -KB“Z' = [27]
2. ey oy

4 THE MULTILAYER SYSTEM

The method of separation of variables is suitable to solve
important geotechnical problems, such as the settlement
of layered soils (e.g. Harr, 1966), pavement analysis (e.g.
Huang, 1993), and so forth. For them, the dissipation of
stresses and displacements caused by a distributed
vertical load, applied on the surface of a system made of
horizontal layers of different mechanical characteristics, is
the main target. Downward local coordinates are used,
with the origin at the central upper level of each layer,
whose individual features are: a thickness H, a modulus
of proportionality E, and a Poisson ratio v. Each layer is
nominated by a number i, counted from the top to the
bottom, being N the number of layers. All of them are
finite except the bottom layer N that deepens infinitely

(Fig. 3).
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Figure 3. Definition of parameters in the multilayer
system.

4.1. Solution for the vertical direction

The solution of the linear differential equation (16)
involves hyperbolic sines and cosines. So that, a
generalized solution is achieved by adopting the following
nomenclature: thmBz = coshfz, if m is even, and fhnfz =
sinhBz, if m is odd. Then, for the layer i, the derivative of
the n-th order of the vertical function is given by

Z M ="~ 1 (8 A +Cizi)+ DI, Bz +

+[@ B; +D;z;)+nGC;]th,Bz; }

(28]

If two successive layers are bonded, the condition of
continuity requires that at the interface, the shear stress,



vertical stress, radial

displacement,

and vertical

displacement be equal. In a symbolic form:

T )
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[29]
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(32]

These four conditions vyield an explicit system of
equations that relates the constants of integration of the
successive layers i and i+1. They can be written as:

A tin Yz tis tiog [[A
Bin _ tor tix tias tios ||Bi 3]
Cin tigr ti;z tiss tias ||C
Disq tiar tie tias  tias [(D

tiag = — 2( —1)BHC - 2s;_ [46]
tiag = 2P —DBHC « A +1)s; [47]
ti44 = %(l)\.l _1X3Hisi _}( 7\’i +1)C|: [48]

Orderly and sequential application of equation (33) to
all layers of the system leads to the equation that relates
the constants of integration of the first and the last layer:

AN Aq T T2 Tz Tig ||Aq
Bn{ _ i Bil _ [Tt T2z T2z Tas ||By [49]
Cn C4 Ta1 Tso Taz Tas||Cq
Dn D1 [Tar Ta2 Taz Taq[|D4

where the global transfer matrix is attained as the
systematic product of all local transfer matrices:

where the nucleus of this equation is the local transfer
matrix i , in which the following notation is used, just for
serendipity:

1 ti11 J[i12 ti13 ti14
I-—: ti21 ti22 ti23 ti24 150]
- I I t; t: t; t;
N1 i31 i32 i33 i34
ti41 ti42 ti43 ti44

Now,

the external

boundary conditions can be

K.
s; =sinhBH; ¢; = coshBH; A, = !

[34]
i+1
So that, the terms of this matrix are written as:

tifq :% A +1)c [39]
tio = %( Ai +1)si [36]
tis = ;*B(lxi +1BHC; (A —T)s; [37]
tig = ;*B(lxi +1BHS; A —1)c; [38]
tior = A [39]
tio = AiC; [40]
tios = AH;s; [41]
tion = AHiC; [42]
tig1 =t = —% Li —1Bs; [43]
tizo =ty = —% Li —1Bc; [44]
tisg = - %(l}"i —1)BHs; - 2¢; _ [45]

established at the top and the bottom of the layer system.
At the surface of layer 1, for z4=0: Z4=1 and Z;"=0, due to
the normalization of the vertical stress and the absence of
the shear stress. These result in: B1=1 and D=-BA1. At
layer N, for zy=» : Zy=0 and Zn'=0 due to the full
dissipation of all stresses. Then: Ay+Bn=0 and Cn+Dn=0.
Substituting the values given by (49) into these equations

yields all constants of integration for layer 1:

A, D23 —bibs -
bbs —bobg
B, =1 152]
bbg —bsb
1= 16 3¥5 [53]
bbs —bybg
D, =—PBA, [54]
where:
by=To +Tx [55]
b3 =Tz + Ty [56]
by =Tz +To3 [57]
b4 = T33 + T43 [58]



bg =Tyiq+To1 =8 Tig + To4) [59]
be =Ta1+ Tg1 — 8 Tag + Tag) [60]

Once these values are known, the constants of integration
of any layer j are obtained readily by means of the
formula:

Aj ] ti11 ti12 ti13 ti14 A1
Bj _ H ti21 ti22 ti23 ti24 B1 61]
Cj i1 ti31 ti32 ti33 ti34 C1
Dj i41 ti42 I:i43 ti44 D1

4.2. Solution for the horizontal direction

Up to this point, the separable variable Z has been set
down. Turning back to the boundary condition at the top
of system, the vertical stress must be equal to the applied
load: 0,1 = - q(xy), for z1 = 0. Provided that it was
assumed that Z4(0) = 1, equation (24) yields the following
differential equation for the other separable variable,

Q=0(x,y):

_Gxy)
B2K,

Ag = [62]

that has at least two important features. It simplifies
equation (17) by changing the systematic error Bch to an
independent error g/(3°K+1) in a proper way as long as q is
small as compared with K. It describes the deflection of a
plate strained by shear, and, therefore, the modulus K
turns to be: K=E/(1-v?).

5 EQUIVALENT LOADED CIRCULAR AREA

For the beginning, an equivalent circular area for a loaded
area of any convex shape is considered. Then, equation
(62) can be written in an equivalent system of polar
coordinates, and, therefore, integrated easily for a
uniformly distributed load over a circular area of radius ao:

2
@:_7qr +CqInr+c, [63]

4p3K,

where B, is the equivalent coefficient of dissipation, and ¢4
and c; , constants of integration to be determined by the
boundary conditions in the horizontal direction. First, the
finiteness of the vertical displacement at the center of the
loaded area, requires that ¢c1 = 0. Second, the constant c;
may be determined in such a way that equation (17) be
satisfied by equation (63) at least at the origin of
coordinates. Hence

__q ( 1,22
0= (- 363 (641
BoKkq\ 4

Now, the non vanishing components of the displacement
vector and the stress tensor for the layer i take the final
form:

Oy =Ogj = q(K']Z [65]
ri i 25?, K1 i
Ki .
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6 LOADED CIRCULAR AREA

Obviously, for a loaded circular area: $=f0, and equations
(65) to (69) get a simpler form. This is the most known
solution for a multilayer system.

6.1. Solution for a semi-infinite medium

For the one layer system, N = 1 and i = 1. Therefore, the

stresses and displacements under the loaded circle are
given by the expressions:

o, =0y :—%(—ﬁZE_BZ

[70]

o, =-qq+pz3P? [71]

Tz = “%Bze_ Bz [72]

u= -% (-pze P2 (73]
22

W=B(:<[1—B;]Q+BZ§_BZ [74]

which are to be compared with the results of the
Boussinesq’s theory. The coefficient of stress dissipation
B may be assessed at once by equating the maximum
settlement obtained from equation (74) for z=0 and r=0, to
the well known formula: wo = 2aq(1-v?)/E. Since p must be



independent of any feature of the layer, two relationships
show up:

[79]
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Figure 3. Stresses in a semi-infinte medium. Continuous
lines stand for equations (34) and (35), and dots lines, for

For a layer underlain by a flexible base: N=2 and stresses
and displacements for i=2 are the same as those given by
equations (70) to (74), provided that q is substituted by:

where H is the thickness of the upper layer, and A1 and C4
are given by equations (51) and (53). In figure 4, it can be
seen that the vertical stress at the interface given by
equation (76) are a little bigger than that found by
Burmister. This happens because the horizontal
distribution of the vertical stress has a shape of a step
function, for the biased discontinuum mechanics, and a
bell shape, for the theory of elasticity. However, it is

interesting to notice that for both smaller and bigger
values of the ratio a/H, this difference reverts.

6.3. Solution for a three-layer system

Even though it is possible to write explicit expressions for
a three-layer system by using equations (65) to (69), it is
better to asses them by a computer program. In table 1,
some values of the vertical stress at the interfaces are
shown.

stresses qiven by the Boussinesq’s theor Table 1. Comparison between equation (66) and
9 y q Y. Burmister’s solution (B),(Huang, 1993), for Ko/Ks=2.
For a multilayer system, the first of them remains
constant, and the second changes with the layer. In figure HilH; alt,  Ki/Ky owlq  0wlq 0w/ Owlq
3, it is shown the good correspondence of the stresses (B) (66) (B) (66)
given by equations (70), (71) and (72) and those given the 0.25 0.1 2 0.1552 0.2292 0.0071 0.0003
Boussinesq’s rigorous theory, revealing a maximum 025 04 2 0.7794 0.8226 0.1031 0.1207
difference for the vertical stress of 0.1340,/q at a depth of 025 16 2 09816 09760 06675 0.7254
1.5z/a. 1.00 0.1 2 0.0108 0.0004 0.0024 0.0001
1.00 04 2 0.1466 0.2261 0.0372 0.0225
0.9 T T [ =TT+ 100 16 2 07103 0.7843 0.3869 0.5057
0.8 AT 22 025 04 20 00438 0.0536  0.0053  0.0001
.[25_ =]
07 A L5 " P 025 04 20 0.3788 0.5794 0.0793 0.0687
' T L0 P 025 16 20 09874 09423 06167 06152
0.6 ; S A A - ] 1.00 041 20 0.0026 0.0000 0.0010 0.0000
05 S AT s ] 100 04 20  0.0381 00527 00156 0.0044
3 : s T s~T100 | 100 16 20 03157 05074 02010 0.2991
0.4 & : =f =t
( 10 - -
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02 JE T 7 | sofF T 7 LOADED AREA OF ARBITRARY SHAPE
' WAVAR SV AP aRT N
0.1 /.{, Al 2. 2o - For an area other than the circular one, the coefficient of
—- ':/_,;,f‘ = dissipation of the stress, B, is to be found by comparison
0.0 +% = with some known solution, which, as a matter of fact, is
0 0.4 0.8 1.2 1.6 2 24  very complicated or does not exist. Therefore, it is

a/H

Figure 4. Vertical normal stress at the interface in a two-
layer system. The continuous line stand for equation (42)
and the dots line for the results from the Burmister’s
theory.

6.2. Solution for a two-layer system

necessary to find an approximate way to calculate it, to be
consistent with the current simplified theory. To
accomplish it, the variable Z must be eliminated from
equations (66) and (67), for r = a, to set down the
equation:

do
724_31: =0

77
dz a ™A [77]



which stands for the equilibrium in the vertical direction of
a cylindrical element of radius a and thickness dz located
at a depth z. In the same way,

do,, +p

— s+ = 78

& Tgze? el
is the equilibrium equation for a cylindrical element of
arbitrary area S, perimeter P, and thickness dz. Writing o,
in terms of the displacement w, and substituting equation
(67), for r=1/ Bo =(S/Tr)“2, and equation (74), for r=0, into
(76), the following equation is met:

o1/4p1/2

B=—
21124374

[79]

For instance, with respect to the equation (69), the shape
factor of the maximum vertical displacement in a
rectangular area of sides 2a and 2b, may be written as:

2 m3/4

I =
S
7r1/4( 1+m)1/2

(80]

where m=b/a. Figure 4 shows the excellent agreement
with the shape factor of the Boussinesq’s theory.
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Figure 5. Shape factor for a loaded rectangular area. The
continuous line stand for equation (79) and the dots line
for the results from the theory of elasticity.

CONCLUSIONS

Deterministic Discontinuum Mechanics is based upon the
structure of the matter and the principle of the mean
value. The first is better described by the Bravais’s spatial
lattices. The second is a general, simple and direct
approach to describe any physical phenomenon. In
particular, the principle of the mean value serves to solve
the problem of the stress transmission in a layered soil, by

averaging the Kirchhoff's stress function in a biased
domain of influence. As a consequence of this operation,
the components of the displacement vector and stress
tensor are expressed as functions of the elements of the
transfer matrices of the fourth order. The separable
variable in the horizontal direction reduces finally to a
second degree polynomial. An approximate solution for a
uniform load applied over an area of any shape is
obtained by the appropriate definition of the parameters of
equivalence to the circular loaded area. The solutions so
found fit well with those of the theory of elasticity, for
isotropic materials.
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