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ABSTRACT 
 
The University of Wollongong Landslide Research Team has completed a GIS-based Landslide 
Susceptibility model for the entire Sydney Basin region. According to the Australian Bureau of 
Statistics and the 2011 Census data, the population within the Sydney Basin Study area is 
approximately one quarter of the population of Australia. This model has been developed with the aid 
of a large scale Landslide Inventory for NSW, which contains 1823 landslides to date. A composite 
geology dataset has also been developed using commercially available geology datasets including 
those from NSW Department of Primary Industries and elsewhere. The model employs a 10m pixel 
Digital Elevation Model (DEM) across the entire study area derived from either Local Government 
sourced Airborne Laser Scan data and where absent the 30m pixel year 2000 Shuttle Radar 
Topography Mission (SRTM) data. Using techniques developed over the last decade and refined 
ArcGIS tools developed over the last three years, Data Mining methods and ESRI ArcGIS capabilities 
have enabled the modelling to produce a very useful zoning outcome over the entire Sydney Basin 
area. The Major advantage of this new tool is that it applies the See5 logic derived from rule sets over 
a large datasets, and produces a visually interpretable outcome. The authors expect the susceptibility 
zoning are suitable for use at Regional to Local Advisory level Local Government Planning 
Development Control Plans. 
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1 INTRODUCTION 
 
This paper discusses the progress of flow category landslide susceptibility modelling of the Sydney 
Basin study area. After compiling of major datasets for the entire Sydney Basin study area, a 
susceptibility model for flows was developed along with the slide category landslide susceptibility 
modelling. The Sydney Basin study area region extends from Newcastle in the north to Batemans Bay 
in the south and west to include the Blue Mountains, an area of 30,603 km

2
in NSW, Australia. The 

Australian Bureau of Statistics and the 2011 census data reports that the population within this area is 
5.4 million people, approximately one quarter of the population of Australia. Therefore, proper land-
use planning is considered essential to cope up with the increasing pressure to develop marginal land. 
In local government areas where catastrophic landslides have occurred, Landslide Risk Assessment 
and management, is recognised as important for proper land-use zoning practices. The Landslide Risk 
Management Guidelines (AGS, 2007) and JTC-1 2008 (Fell et al., 2008; Fell et al., 2008) state the 
development of Landslide Inventories and then Landslide Susceptibility Zoning as the first step of 
landslide risk assessment for effective land use planning.  
 
Based on detailed and comprehensive landslide mapping, as a companion paper to slide modelling 
(Palamakumbure et al., 2014), this study focuses on using a data mining technique, namely decision 
tree derived rule-sets, to model the susceptibility of flow category landslides. In the literature, decision 
trees have been used to map landslide susceptibility in numerous occasions and this technique is well 
known for its enhanced predictive capabilities, transparency and interpretability (Flentje et al., 2007; 
Saito et al., 2009; Miner et al., 2010; Wang and Niu, 2010; Yeon et al., 2010). See5 data mining 
software (Quinlan, 2013) developed based on C5 learning algorithm, was used in this study to develop 
decision tree derived rules.  
 
Expansion of the University of Wollongong (UOW) landslide inventory from its Illawarra centric 
coverage to include the landslides across the entire Sydney Basin study area has been undertaken by 
the Landslide Research Team (LRT) (Flentje et al., 2012). To November 2014, the inventory contains 
1823 landslides, out of which 267 are flows. Figure 1 summarises the volume distribution of 93 flows, 
of which the detailed information is available in our inventory. Compilation of a high/medium resolution 



composite Digital elevation model and Geology datasets has been completed. With the data collection 
now being finalized, two susceptibility maps for slide and flow category landslides have been 
prepared. These susceptibility zoning outcomes are suitable for use as Preliminary or up to 
Intermediate level Susceptibility Zoning for Local Government Planning Development Control Plans in 
the absence of any other information.  

 
Figure 1. Volume distribution of 93 flows 

 
2 DATA SETS AND TOOLS 
 
2.1 Digital Elevation model  
 
High resolution Airborne Laser Scan data (ALS) is available for some parts of the study area. In order 
to cover remaining parts of the study area, CSIRO/Geoscience Australia/NASA Global DEM V2.0 
(NASA, 2011) at 30m was used. The high density ALS point cloud is suitable for preparing a high 
resolution DEM at 10m. Therefore, NASA GDEM was resampled into 10m grid cell size before 
combining it with the ALS DEM to produce a composite digital elevation model to cover the study area.   
Subsequently, from this DEM, eight other derivatives namely, Slope, Aspect, Curvature, Profile 
Curvature, Plan Curvature, Flow Accumulation, Wetness Index and Terrain classification were 
obtained as model input layers  
 
2.2 Software tools 
 
For the model development and multilayer data analysis, ArcGIS v.10 software environment was 
used. Furthermore, See5 software was used to derive decision tree based rule-sets.  The entire data 
mining and GIS process was automated by developing an ArcGIS Landslide data mining (LSDM) add-
in toolbar(Palamakumbure et al., 2014). This tool automates a series of tedious manual processes 
involved in data extraction, preparation, deriving See5 rules and preparation of the ArcGIS 
susceptibility grid.  
 
3 LANDSLIDE PREDICTIONS AND THE SUSCEPTIBILITY  
 
The ArcGIS LSDM toolbar has been used to finalise the process of extracting attributes of the GIS 
data layers, calling See5, applying rule based predictions over the study area and making the final 
susceptibility map. The training dataset was prepared by selecting all of the flow category landslide 
pixels and an equal number of non-flow pixels to balance the numerical output of the model. The 
attribute values of each input layers corresponding to all of the flow pixel locations and selected non-
flow locations were extracted as separate training cases. The See5 constructs decision tree classifiers 



by defining test conditions based on the attribute values and splitting the training data into smaller 
subsets.  
 
Normally the See5 learning algorithm being a discrete or categorical classifier predicts a discrete class 
corresponding to a case. However, according to the Landslide Risk Management (LRM) guidelines, 
landslide susceptibility has to be expressed as a continuous number. Therefore, real valued likelihood 
values were produced using confidence values of rules. Confidence of the predications made is 
evaluated using the Laplace ratio (n-m+1)/(n+2) where n is the number of training cases that a specific 
rule covers and m, is the number of wrongly classified cases.  The average confidence value of the 
rules participated in classifying a pixel ranges from 0 to 1. When a pixel satisfies the conditions of 
landslide and non-landslide class rules, the class which holds the highest average confidence value 
wins. If the average confidence value of the non-landslide class is greater than that of the landslide 
class, the confidence of the non-landslide class prediction is given by multiplying the average 
confidence by -1. This method allows the landslide susceptibility to be presented with a value which 
ranges from -1 to 1.   
 
4 ANALYSIS OF LANDSLIDE SUSCEPTIBILITY ZONES 

 
Data from eight different layers derived from the Digital Elevation model was extracted corresponding 
to the landslide and randomly selected non-landslide pixel locations. Modelling of Slide category 
(Palamakumbure et al., 2014) and Flow category landslides have been conducted separately using 
the same See5 methodology and Table 1 summarises the results.  
 
Table 1: Summary of Flow and Slide category landslide susceptibility modelling 

 Flow Slide 

Attribute Usage (%) 

Slope 100 38 

Plan Curvature 39 7 

Profile Curvature 26 11 

Curvature 26 9 

Aspect 16 11 

Terrain 14 4 

Wetness Index 12 12 

Geology - 100 

Flow Accumulation <1% <1% 

Training cases 32,862 670,164 

 
 
 
Geology data layer was not used in modelling of the flow category landslides as it is assumed that the 
occurrence of flows does not largely depend on Geology. Debris flows are generally shallow seated 
landslides and therefore, underlying geology is less relevant. Our modelling methodology uses known 
debris flows as model training reference points. Our model is based on the mapped location of only 
267 flows within an area of 30,603 km

2
. If the Geology was included in the modelling, the spatial 

extent of the modelled Debris Flow susceptibility would be more limited by the Geology in which they 
occur, which we consider to be unnecessarily restrictive for the application – developing a debris flow 
susceptibility map with wide application. If alternatively, say 1000 debris flows had been mapped 
within a single local government area, modelling within that small area may likely be best done using 
geology. 
 
For Slide category landslides, as shown in Table 1, Geology has contributed to classify 100% of the 
data and the second largest amount of data was classified using Slope. When modelling of flows, 
Slope has classified 100% of the data.  Plan Curvature, Profile Curvature, Curvature and Terrain 
classification have classified more data in modelling of flows than that of the slides and the 
contribution of Flow accumulation was negligible in both models. 
 
The values in the table 4(b) of AGS LRM Zoning Guidelines (AGS, 2007) have been used as a 
reference to categorising the landslide susceptibility classes relative to the landslide inventory. As our 
inventory is quite accurate, albeit incomplete, we regard table 4(b) as being most appropriate. The 
logic of the See5 rules has been applied across the entire raster grids producing a landslide 



confidence value for each pixel. Figure 2 plots the landslide confidence value against the cumulative 
percentage of pixels for 1) all the mapped flow category landslides and 2) the entire model area. 
Following the steps in the distribution curves and the requiems of Table 4(b), four landslide 
susceptibility classes were defined as per the demarcated four regions in the Figure 2. Flow pixels 
curve and study area pixels curve in each region aid the calculation of study area and landslide area in 
each susceptibility class.  Figure 2 clearly shows that 50% of our inventory is captured in just 15% of 
the study area, and furthermore, 80% of our inventory is captured in 28% of the study area further 
reflecting that table 4(b) is best adopted with our work. It is also of note that the second author of this 
paper helped develop this particular portion of the AGS Guidelines during early iterations of the work 
reported herein. 
 

 
Figure 2. Classification of Susceptibility Zones using the distribution of the confidence values 
 
The Susceptibility modelling of Flow category landslides (Table 2) has classified 16% of the study area 
(approximately 4,944 km

2
), as High Susceptibility. This area contains 54% of the known flows with a 

density of 0.02%. The moderate susceptibility class covers nearly 14% of the study area (4,326 km
2
) 

and contains 32% of the flow population with a flow density of 0.01%. The area of Low Susceptibility 
zone is 3,399 km

2
 (11% of the study area) and contains 5% of the flow population with a flow density 

of 0.002%.  Almost 59% of the study area, approximately 18,233 km
2
, has been classified as Very Low 

Susceptibility containing 9% of the flow population with a density of 0.0008%. Furthermore, 
considering the combined results of High and Moderate susceptibility classes, nearly 86% of the slides 
occur in just 30% of the study area. 

 
Table 2: Distribution of flows in the landslide susceptibility classes. 

Susceptibility 
Class 

% of the 
Study Area 

Area (km
2
) of 

class 
% of Flow 
population 

Area of 
Flows (km

2
) 

% of zoned 
area effected 

by flows 

Very Low - 1 59 18,233 9 0.15 0.0008 

Low - 2 11 3,399 5 0.08 0.0024 

Moderate - 3 14 4,326 32 0.53 0.0122 

High - 4 16 4,944 54 0.89 0.0179 

 
The percentage of landslides included in the Very Low category of the flow model (Table 3) is greater 
than that of the slide model and 8% higher than the recommended value in the Table 4(b) of LRM 
Guidelines (AGS, 2007). Furthermore, the High susceptibility class of the flow model covers 16% of 
the study area whereas in the slide model, the corresponding value is 6.5%. The area of the Very Low 
class of the flow model is 10% greater than that of the slide model. The number of training points 
available to train the slide category susceptibility model is almost 20 times greater than that of the flow 
category susceptibility modelling. Furthermore, the proportion of the each susceptibility class affected 



by flow category landslides is lower than the corresponding values of the slide category model 
outcome. The flow category landslide susceptibility map is shown in the Figure 3. 
 
Table 3: Comparison of the susceptibility descriptors of Flow and Slide category models 

Susceptibility 
Descriptors 

Recommended % of landslides 
as in Table 4(b) of LRM 
Guidelines (AGS 2007) 

% landslides % study area 
% zoned area 

effected 

flows slides flows slides flows slides

Very Low - 1 0 to 1 9 0.4 59 69.6 ~0 ~0 

Low - 2 >1 to 10 5 3.5 11 15.5 0.002 0.19 

Moderate - 3 >10 to 50 32 15.7 14 8.4 0.01 0.02 

High - 4 >50 54 80.4 16 6.5 0.02 1.32 

 
 
5 FIELD CALIBRATION OF THE FLOW MODEL  
 
During the field data collection over a period of many years, a total of 503 field based assessments of 
flow category Landslide Susceptibility were recorded to facilitate subsequent model calibration. The 
field assessment work was undertaken by the first two authors and other colleges at different times. 
The work was completed using GPS/GNSS to record accurate spatial positioning, and assessing the 
susceptibility of an area equating to a 50m diameter circle (considered to be an appropriate area upon 
which to make a field judgement) centred at the recorded location. Numerical values of 1 to 4 were 
assigned to each of the field assessment locations from very low (189 points), low (174 points), 
moderate (95 points) to high (45 points) flow category landslide Susceptibility respectively. Using ESRI 
ArcGIS Spatial Analyst Zonal Statistics, the mean computer modelled Susceptibility value for all pixels 
within each of 50m diameter GIS-generated circles of approximately 1,963 square meters centred on 
each of the GPS recorded locations was determined. Then the modelled susceptibility was compared 
with the field based assessment.  
 
The difference, D, between the average value predicted by the model (50m diameter circle, 1963.5m

2
, 

intersecting all 10m pixels (100m
2
)) and the value assessed independently in the field was plotted in 

the histogram shown in Figure 4. Therefore the difference D = 0 indicates the count for which the 
assessments match. Results are rounded to the nearest whole number. Almost 47% of the sites have 
average model results the same as they have been assessed in the field. An additional 16%, have 
been assessed by the computer model to be one Susceptibility class greater (the model is 
conservative) than that during the field assessment, and additional 4% has been assessed to be two 
Susceptibility classes greater than the field assessment. A further 22% have been assessed to be one 
Susceptibility class less than (the model is not conservative) that during the field assessment, with a 
further 9%, two classes less than the field assessments and 3%, three classes less than the field 
assessment. 
 
 
6 CONCLUSION 
 
The NSW Landslide Inventory and large scale GIS based data layers have been used in the modelling 
of the flow category Landslide Susceptibility. The See5 based data mining approach was successful in 
meeting the AGS (2007) Table 4(b) objectives up to a large extent. The slide category susceptibility 
model has been more successful in producing values that match the recommended susceptibility 
descriptors of the guidelines than the flow category model. This is due to the smaller number of flows 
(267), recorded in the Inventory relative to the number of slides (1424).  
  
The Landslide Susceptibility toolbar has demonstrated its suitability for application in modelling large 
scale high resolution datasets. Based on the research work completed recently, the ratio between 
positive and negative training cases is chosen as 1:1. Also, further research work is still proceeding 
regarding selection of See5 modelling parameters suitable to conduct a large scale and high 
resolution modelling work. Assembling and preparation of data was one of the main challenges in this 
project and in particular the Landslide Inventory. 
 



 
Figure 3. Flow category landslide susceptibility map of the Sydney Basin 

 
This being a regional spatial model, rainfall intensity has not been incorporated in the modelling work 
as the data is hugely variable and extremely difficult to predict. Efforts have been made to include 
ground hydrogeology parameters as best as we can. It was noted that Flow Accumulation was the 



least contributing factor towards classifying data in both slide and flow models. Geology has not been 
considered as an important parameter in the regional flow modelling but when modelling slides, it was 
the main contributor towards classifying the data. In both models, Slope has been highlighted as an 
important parameter. Furthermore, in the flow category landslide susceptibility model, all of the 
curvature parameters have contributed more towards classifying the data than in the slide model. 
However, Wetness Index has been more useful in classifying slides than flows.    
 

 
 

Figure 4. Histogram showing the difference between the Field and Modelled Landslide Susceptibility 
 
We have compared the field assessment with model predictions and evaluated these comparisons. 
The results of the field assessment show that the model has an overall 67% of conservative success 
(D = 0, 1 and 2). The authors suggest that the flow Category Susceptibility Zoning outcomes may be 
suitable for use as Preliminary and perhaps up to Intermediate level Susceptibility Zoning for Local 
Government Planning Development Control Plans where no better zoning information exists. The 
modelling should differentiate between man-made and natural failures although we have not 
progressed to that level of work thus far. The inventory does differentiate man-made failures although 
more data regarding these types of failures does need to be collected. It is an area for future 
development.  
 
The authors would like to provide this information to local governments in exchange for landslide 
inventory information.  We would then be able to enhance our existing inventory, subject to funding 
and in turn iterate and further develop the modelling and zoning outcomes. We look forward to working 
with local governments across the Sydney Basin over the coming years. 
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