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Opening remarks

Before giving my lecture I should like to
record how honoured I feel in receiving the
John Jaeger Memorial Medal. I accept it
not only as recognition of my own work but
particularly in recognition of the work of
the whole Geomechanics group at the
University of Sydney; Dr Poulos, Dr Booker,
Dr Brown, Mr Pells and an exceptionally
gifted series of research students both
past and present. We have all been very
happy working together and I am sure will
continve so. I am also very pleased that
this medal is named after Professor Jaeger.
He was a most distinguished Australian
scientist and he was a true academic in
that all his work, both theocretical and
experimental was of the highest gquality.
His textbooks are of lasting value and

a joy to refer to. My only regret is that
we in Engineering Geomechanics didn't have
as much contact with him as we ought to
have had., It was our fault not his, and
we could have benefitted greatly. 8o I am
proud to receive the first medal and proud
that it bears the name of John Jaeger.

Introduction

The main purpose of this lecture is to

examine the truth of the fellowing statement:

"The maximum load capacity of a mass

of soil or rock is not uniguely depend-
ent on the strength of an element of
the material.”

Although, when put baldly like that, most
of us would agree with this statement, we
frequently continue to reply on conventional
stability analysis which only reguires the
input of one pair of strength parameters of
the material - ¢ and ¢. That this may lead
to an unreliable estimate of the overall
stability of a mass of soil or rock arises
from two main factors.

a) Semi-brittle behaviour - dense yranular
soils, over consolidatedclays and virtually
all rocks have a peak strength. Beyond this
peak, further plastic straining produces a
strain softening with loss of strength until
a constant residual or ultimate strength is
reached. The ratio of peak to residual
strength (sensitivity or brittleness ratio)
is obviously a major parameter in determin-
ing the extent to which the semi-brittle
behaviour affects the overall stability of

such material, But the ratioc of
to the elastic modulus, what may
the softening ratic, clearly may
also play an important role, since it will
determine the extent to which some zones in
the mass have already been strained well
beyond the peak by the time the mass reaches
its maximum load capacity. This maximum
occurs when sufficient additional zones of
the mass reach peak strength to allow
unrestricted plastic flow so that collapse
follows. Is it too optimistic to use the
undisturbed strength of a sensitive clay, or
the peak ¢ of a dense sand to predict the
bearing capacity of foundations on such
s0ils? OQOr is it too pessimistic to use the
fully remoulded strength of the clay or

¢cv of the sand?

a mass of
softening
be termed

b) Defects - some scil and most rock
masses contain defects (joints, cracks,
bedding planes, fissures in clay ete) which
have lower strength properties {(c and/or ¢#)
than the intact material. This is recog-
nised in rock mechanics, sometimes to the
exclusion of consideration of the possible
contribution of the intact strength tc the
overall mass stability, but is not often
allowed for in soil mechanics. If the sets
of defects are reasenably constant in
arientation and closely spaced the mass can
be considered to be homogeneous but aniso=-
tropic, the properties of this composite
material being determined by the defect
strength, the intact strength and the
orientation of the defect sets. Under what
circumstances dc the defects have a
negligible weakening effect on say the
bearing capacity of the mass or under what
circumstances does their strenygth dominate?

*his lecture is concerned with examining
the theoretical effects of semi-brittle
behaviour and of the presence of defects on
the stability of soil and rock masses. For
simplicity, attention is restricted to
surface bearing capacity of the mass under
plane strain conditions, and, for the most
part, ignoring the effect of density of the
material. Attentien is also restricted to
failure of the mass due to a monotonically
increasing load or single load application
but an aside on the subject of incremental
failure for cyclic loading is worth making.

Cyclic loading - an aside

In recent years there has been much attention
paid to the stability of foundations under
cyclie loading, this being an important




aspect of the design of off-shore structures,
Most of the research work in this area has
been concerned with loss of strength of the
s0il resulting from degration of the
particles, build up of pore water pressures,
or other 'fatigue' effects of cyclic stress-
ing. It is less commonly recognised that,
even if the strength of the soil is not
reduced by c¢yclic stressing, the foundation
and soil mass system can fail by incremental
plastic collapse although all combinations
of load applied to the foundations within
the repeated cycle are less than those
required to cause single or monotonic load
collapse. On the other hand, the existence
of 'shakedown' limits for cyclic lecading has
long been recongised in relation to struct-
ural frames.

The shakedown of surface strip footings under
combined loads has recently been considered
by Pande et al {1980) and Aboustit and
Reddy (1980). The results of some recent
theoretical studies at the University of
Sydney (Swane 1980) on the shakedown limit
for cyclic lateral loading of a pile in
clay, the strength of which is unaffected by
cyclic stressing, are given in figures 1 and
2. The combination of moment and horizontal
load to produce collapse under a single or
monotonically increasing loading are shown
as a large full-line loop. In contrast,

the combination of cyclic lecad, about a

mean load of M = M and H=H_ = 0, to
produce incremental collapse Sre shown as
the smaller dashed-line loop. Changing

from a rigid pile (Fig.l) to a flexible
pile (Fig.2) does not alter the large full-
line loop but reduces the cyelic load
capacity further. It should be pointed out
that, for material with strength properties
unaffected by cyclic stressing, the single
load capacity of the system remains
unaffected by cyclic loading. If, after any

E&c constant
(unaffected by
¢ycling)
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FIG1 SHAKEDOWN FOR LATERALLY LOADED RIGID PILE

(Swane 1980)

number of load cycles within the large full-
line loop, cycling is stopped and the loading
is increased monotonically along any M/H
path, plastic collapse will still only occur
when the loading path intersects the large
full-line loop.

The remainder of this lecture is concerned

with collapse under single or monotonic
loading.
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FIG 2 SHAKEDOWN FOR_LATERALLY LOADED FLEXBLE PILE
(Swane,1980)

Strain Softening

The effect of strain softening on the bearing
capacity of a strip footing on dense sand is
well illustrated by the results of model
footing tests conducted by Kirkpatrick and
Uzuner (Kirkpatrick 1977} as shown in fig.3.
In order to include the wide range of theo-
retical bearing capacities the load is plotted
to a logarithmic scale in this figure. These
theoretical values for a rough footing have
been calculated from plasticity theory for a
simple frictional plastic with no softening
behaviour (Davis and Booker 1971). It can bhe
seen that, although the experimental results
show a peak followed by a lower ultimate
bearing capacity, the ratio of the two values
is much closer to unity than the ratio of the
theoretical bearing capacities for ¢ = ¢p .
and ¢ = & using the values of g from plane
strain tegging. The experimental peak is
only about a quarter of the theoretical value
from simple plasticity theory using ¢ = ¢
whereas the ultimate experimental value i
close to that given by the theory using

g =¢g . 'The gituation is confused by the
commoli¥ but inappropriate use of triaxial
compression values of @ for plane strain
stability problems. In this case, this
would lead fortuitously to closer agreement
between the simple theory and experiment.
it may be further commented that, although

geak




it is common experience that plane strain
values of ¢ are nigher than triaxial values,
the difference in Kirkpatrick and Uzuner's
tests is surprisingly high.
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FiG 3 MODEL FOQOTING TEST ON SAND
{Kirkpatrick and Uzuner 1977}

In principie, it should be possible to
examine theoretically the effect of strain
softening by incorporating appropriate

strain softening constitutive laws into a
numerical analysis such as a finite element
method. In practice there are problems of
numerical accuracy, particularly those
associated with bifurcation - the development
of narrowing zones of increasing intensity

of plastic shear strain in parts of the mass

which have passed the peak strength. It is
therefore useful for bearing capacity
studies to consider a simple theoretical
model which approximately reproduces the
main features of the manner in which a mass
of material supports a surface footing but

of itself can be analysed exactly.
The Box Model

In descriptive terms, the application of a
localised load to the surface of a semi-
infinite mass of material causes high
vertical compressive stresses in the general
region beneath the load. This vertical com-
pression is restrained by the general regions
outside the lead and near the surface which
are therefore in a atate of horizontal
compression. This behaviour is broadly
reproduced by a simple model, the box model,
which can easily be analysed exactly. It is
illustrated as an inset to fig. 4, For
small values of the load P, both inner and
outer compartments of the box are in an
elastic state. Increasing P produces
plastic yielding in the centre compartment
while the outer remain elastic. Eventually
the cuter alsc yield and the collapse load
for the footing is reached. Sclutions for
the box model for a non-softening purely
cohesive material are shown in fig.4. The
depth and width of the box have keen select-
ed so that the initial elastic slope and

the load at which, for an initially
unstressed state, local yield first occurs
both agree with the known values for an
elastic half-space. When scaled to the same
collapse load, the solutions from the box
model are seen to agree quite well with those
by an elasto-plastic finite analysis for the
half-space (D'Appolonia et al 197]) even
when the initial state of stress is not zero.
These finite element solutions can be
regarded as accurate enough for this purpose
since difficulties of numerical accuracy are
not nearly as great for non-softening
material as for softening. Thus the box
model has promise for semi-quantitative
examination of strain-softening and other
departures from the properties of the simple
ideal elasto-plastic material.
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ing capacity is only slightly
less than that predicted from
the peak strength.
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brittleness, that is further
increase in the softening ratio
causes no further decrease in
the peak bearing capacity, and
that, even if the residual
shear strength approaches zeroc,
the peak bearing capacity of
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Peak Bearing Capacity of Brittle
Intact Rock

The indication from the hox
model that there is a gritical
softening ratio beyond which

the peak bearing capacity is not
further reduced by increasing
softening ratio, suggests an
adaption of simple plasticity
theoxy which has implications
for the bearing capacity of
intact rock. The analysis for

SOFTENING RATIO

(assuming no softening) and is also only
slightly affected by the initial stress
state. 1In contrast, fig.6 gives the
results for a much more brittle material
with a high softening ratio (0.5, perhaps
appropriate for a purely cohesive version
of a soft rock). This figure shows that
in this case the peak bearing capacity may
be very significantly less than that
predicted- from the peak strength (assuming
no softening) and that the initial stress
has a very marked effect. It can also be
remarked that, according to the box model,
the ultimate or residual bearing capacity
is completely unaffected by the initial
state of stress and is that predicted for
a simple non-~softening material using the
residual strength as the constant strength.
This can be seen in fig's 5 and 6. Fig.3
also gives some indication that this may
be experimentally correct for sands.

For zero initial stress, the effect of
increasing softening ratio is shown in
£ig.7, again using the box model for the
analysis. This suggests that beyond a
critical softening ratio (point A) further

a strip footing is outlined in
fig 8. 8ince, for all but deep
or very

large foundations, the stresses due to body
forces are small compared with the com-
pression strength of most types of rock,
such body forces are neglected in the
solution given in fig.B. It is assumed

that the rock is brittle and therefore has

a high softening ratio equivalent in fig.?7
to lying along the horizontal line AB. It
ig further assumed that the softening
consisting mainly of the breaking of brittle
bonds between rock particles so that the
peak strength, as for example measured in
unconfined compression tests (q ), arises
from a peak friction angle, & and a peak
cohesion, c_; whereas the refidual strength
is purely fRictional with a frictional angle
8 probably less than ¢_, the cohesion
bEing destroyed (c_ = 0)F 1In fig.8 OABC is
a zone where the sfrains have been suffic-
ient to pass the material to its residunal
condition - it is the equivalent of the
centre compartment of the box model. On
the other hand, it is reasonable to assune
that the region 0OCD has only just reached
its peak strength when the load reaches its
peak bearing capacity value. OCD is the
eguivalent of the outer compartment of the
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box model. For kinematic and static admiss—
ibility OC is a stress and velocity
discontinuity and it can be shown that it
has to be at @ to the vertical, The peak
bearing capacify only depends on ¢_ and q .
g  and c_ only affect the result Tinsofa

aB they Eogether determine q,-

For the reasonable range of 30° to 35° for

#_ the peak bearing capacity is predicted to
be five to seven times the unconfined com-
pression strength. This agrees well with
general experience and is much lower than
the value given by the usual Prandtl
plasticity solution for a non-softening
material having a constant strength represen-
ed by g and c¢_. For example, for the
relativgly modBst plane strain value of

g = 40", the Prandtl bearing capacity is
nearly 18 times the unconfined compression
strength.

Defects

In this section the goil or rock is assumed
to be a simple plastic with no strain soften-
ing properties but it is assumed that the
mass consists of substance material having
cohesion cg and friction angle gg and
containing sets of continucusg defects or
fissures closely spaced relative to major
dimensions of any problem such as the width
of a footing, at constant inclinations w to
the vertical and having shear
strengths on the defects defined by
cf (£ cg) and gf (< #g). One set of
defects is illustrated in fig 9. The
combined material, substance plus

45-%

Failure in QABC at residual, =0, & c =0
Foilure in OCD at peak, =0,8 c=c;
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FIG.8 PEAK BEARING CAPACITY OF A BRITTLE INTACT

defects, is equivalent to a special
version of a homogensous plastically
anisotropic material. The bearing
capacity of purely cohesive soil
with an anisotyropy which varies
smoothly with rotation of the
principal directions is dealt with
by Davis and Christian {(1971) and
the more general cchesive-frictional
case by Booker and Davis (1972).

ROCK

f139 ANISOTROPY DUE TO FISSURES OR DEFECTS
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&1 \ or joints
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For plane strain conditions, the failure
surface for an anisotropic material needs to
be specified in a three dimensional stress
space., It is convenient to select X=(o_-0_)/2,
Y=(0_+0_)/2 and 2=t__ as the cartesian ¥
coordindte system. *¥or failure in the
substance only, the failure surface will be a
cone centred on the 2 axis. The circular
intersection of this cone with the plane
Z=const. is shown asz the left-hand diagram

of fig.l0. For failure on the defects anly,
the failure surface is a pair of planes which
for 2= const., appear as the two straight
lines intersecting at 2¢_ as shown in the
centre diagram of fig.l0. The composite
material therefore has a failure surface
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“consisting of a cone with flats as indicated
by the full lines in the right-hand diagram
of fig.10. The plane surfaces for defect
£ailure and the conical surface for substance
failure intersect the plane ¥=0 in the full
lines shown in fig.1ll.
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Fissured Clay

when ¢=0 the conical failure surface for
substance failure becomes a cylinder of
radius c_ and the defect failure surfaces
become pﬁrallel planes 2c_ apart. This is
illustrated in fig.l2a. ft can be seen from
this figure that the addition of a second

set of defects orthogonal to the first causes
no change in the failure surface and hence

no change to the solution for bearing
capacity or any other stability problem.

For purely cohesive material it can be
shown (Davis and Christian 1971, and Booker
and Davis 1972) that the vertical bhearing

Fissures
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FIG12 COMPOSITE FAILURE SURFACE FOR ¢ =0

capacity of a strip footing is given by the
length of the solid line in fig's 12b and c.
As these figures indicate, two cases arise:
A > 2w and A < 2w, where sin} = cf/c .
The geometry of the figures gives® %
following equations for the bearing
capacity:

the

Ik

pu/cs 2{cos} + & + 1) for X » 2w L (1)

2(cosh + A + sind cosec 2w)

p/c
u s for A £ 2w

<. {2}




It will be seen that for the first case the
inclination of the defects has no influence
on the bearing capacity: "~The sclution for -
multiple sets of defects can easily be .-
obtained in a similar manner. v

w=20° & 10 p=0

In the above 0 < w < 45° , but any value

of w ocutside ‘this range always has an’
equivalent value_within it because w is
equivalent to 90" + w and. is also equivalent A L En
to -w. However, although two sets of {(@)For Substance (b)Y For Fissures
defects at w and 90 + w give the same bear- STRESS CHARACTERISTICS '
ing capacity as either one eon its own, two L o )

sets at w and -w give a lower hearing : A 'O_ e F”_
capacity. . For example, two sets at 22.5 [ o ' o
and -22.5" having the samg Cg, Or more
generally at & and w — 43, “give a bearing
capacity of 2c_{2 + sec 2 i) independent

of c s provide& cf/cE <142,

o]

B
The bearing capacity for a single set of _ < UVELOCITY - PATTERN
defects br for two orthogonal sets) is ‘ o D :
plotted in fig.l3 from which the very _ o '.""f“ w e R R
significant potential weakening effect of FIG15 BEARING CAPACITY OF FISSURED CLAY
the defects or fissures in clay can be seen. - ; T e e
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AND ORIENTATION ON VERTICAL-.
BEARING CAPACITY

range O < cf/cs < 1 and the bearing
capacity is given by equation 1. (For
o7 éf/c = 0 eguation 2 applies.)
{ Fiyg iab is for defects at w=45
[ ] G and/or w= -452.and ‘applies for
all values of cg/c. The bearing
capacity is given by equation
b) - 2. .In both cases there is at
- least one stress discontipuity
and there are regions of
.simultaneous failure in the
) substance and on defects. It
€/ es = 8in A is this which enables the
zi : " e— == Discontinuity in stress . -.solution :to be both kinemati-

(o]

‘cally and statically. admissible
.and +therefore, by the limit .
:‘theorems, the exact solution.
“A more general case, w = 20°
. and/or @ =:110%9,. is shown in
. fig .15 fo. .cgroy ratlon
.typified by fig 12c¢. Again,
there are stress digcontinulte-
. jes and reglons of simulianeocus
' defect and substance failure,
_'The Mohr circles for this case
are shown in fig 16.




Rock with Defeckts

The effect of frequently spaced parallel
joints or defects on the bearing capacity
of rock can be investigated along the same
lines as that of fissures in clays except
that, for frictional material, the analysis
becomes more complex. For numerical
evaluatgon attention is restricted to g_ =
@ 357 but the full range 0 < cp < Cf
chnsidered. - s

is

The plastic state of stress beneath the
surface outside the footing (region 1 in
fig's 11 and 18) is determined by the
boundary condition and is given by the point

Stress discontinuity
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STRESS FIELDS FOR BEARING CAPACITY OF ROCK WITH HORIZONTAL

1 in fig.1ll. Whether this plastic state is
in the substance or on the defects depends
essentially on the inclination of the
defects. Using the theory developed in
Booker and Davis {1972}, the change in the
plastic stress state, in moving along a
stress characteristic in the physical plane
from region 1 to the region beneath the
footing, can be evaluated. This change in
stress state is a path on the failure surface
in X, Y, %z space. Movement along a path on
the conical portion of the failure surface
in X, ¥, Z space corresponds to movement
along a curved substance stress character-
istic in the physical plane. Movement along
a path on the planar portions of the failure
surface in X, Y, Z space corresponds to a
jump across a stress discontinuity in the
physical plane, both sides of which involve
failure on the defects with simultaneous
failure in the substance on one side.

DEFECTS
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As an example, consider the case of w = 90,
c. = 0 and surcharge q = 0. The boundary
cbndition for region 1, generally illustrated
in fig.ll, now becomes that given in fig.l7a
with the value of the stress 2, (Z for

region 1) indicated. In this case failure

in region 1 is simultaneously in the sub-
stance and on the defects. The intersection
of the failure surface with the plane 2 = 2,
is shown in fig.l7b. The stress state then
moves along a path on the planar portion of
the failure surface until at point 2 (fig.l7c)
simultanecus failure in the substance again
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FIG 20 VELOCITY FIELDS FOR _PROBLEM OF FIG 18

occurs. The theory gives the change in 2
from 2, to 2, and the change in the direction
of the major principal stress from 9, to §,.
These changes occur as jumps across the
stress discontinuity OD in the physical plane
(fig.18). The stress state then moves over
the conical portion of the failure surface
until & 8, 0 {(the boundary condition
beneath the footing} and fig.l7c changes to
fig.17d with the change %, to 2, evaluated
from the theory. This change in stress state
from (2) to (3) corresponds to the centred
fan BOC in fig.18. The bearing capacity P,




can be readily calculated from Z3;. The
Mohr circles for the stress states (1}, (2)
and (3) are given in £ig.19 and the velocity
pattern, assuming an associated flow rule,
is given in fig.20.

For values of w other than 90°, the solutions
also always have at least one discontinuity
and have regions of simultaneous defect and
substance failure, but the sequence of
redgions may be different and the number of
regions greater. They can become consider-
ably more complex.
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FI5 21 EFFECT OF DEFECT ORIENTATION ON BEARNG
CAPACITY OF ROCK

The results of the analysis for the full
range of c¢_/c_ and w are given in fig.21.
The horizoﬁtaf line for c_/c_ = 1 at the top
of the fiqure gives the bgarfng capacity
without any weakening from defects. For
comparison, the unconfined compressicn
strength is also shown at the bottom of the
figure. It can be seen that for low values
of w the defects do not cause a very laxrge
loss of beariBg capacity, and similarly for
w close to 907, but that in between the loss
can be very great. The vertical drop for

w =¢ = 35 when cf/cS = 0 arises from the

fact that no force can be applied to a
purely frictional interface 1f the angle

of obliquity is greater than the friction
angle but that the force is unlimited if
the angle of obliquity is even infinitesi-
mally less than the friction angle. The
other kinks in the curves arise from
changes in the mode or sequence of plastic
regions in the sclutions.

The results of fig.2l1 apply equally well to
negative values of w. The effect of more
than one set of defects has not been
studied in any detail but there are no
theoretical difficulties to such extension.
In general, every additional set will cause
further lowering of the bearing capacity
although not necessarily to a great extent.
For example, the solution for the two sets
w =0 and 90°, with e¢_./c_ = 0, is indicated
in £ig.21, and gives £ vEiuve only slightly
below that for the single set w = 90 .

The results of fig.21 are for zero surcharge
but, by the following transformation, the
effect of surcharge can be included.

Let the required case be:

£ = = ©
By = b =B (= 357)
defect cchesion = cfa
substance cohesion =C
surcharge =q

Then bearing capacity:

p. =N {c + g tang) + g

sa

where N is the value from fig.2l
for Cp _ Cen T A tang
€.~ g_ ¥+ q tang
cS csa + g tan
Conclusion

It is hoped that the examples given in this
lecture demonstrate that plasticity theory
is capable not only of dealing with a very
simple ideal material (so removed from real
materials that it is suspected by many of
being of little practical value), but is
capable of giving insight into the effects
of such aspects of real soil and rock as
its semi-brittle or strain softening
behaviour and the existence of joints,
fissures and other defects. The theory
shows that both can reduce the load capacity
of a mass of soil or rock very considerably
- a conclusion giving satisfactory confirm-
ation of common sense!l
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