INTERNATIONAL SOCIETY FOR
SOIL MECHANICS AND
GEOTECHNICAL ENGINEERING

SIMSG [} ISSMGE

s

This paper was downloaded from the Online Library of
the International Society for Soil Mechanics and
Geotechnical Engineering (ISSMGE). The library is
available here:

https://www.issmge.org/publications/online-library

This is an open-access database that archives thousands
of papers published under the Auspices of the ISSMGE and
maintained by the Innovation and Development
Committee of ISSMGE.



https://www.issmge.org/publications/online-library

13" Australia New Zealand Conference on Geomechanics — Acosta-Martinez & Lehane (Eds.)
© 2019 Australian Geomechanics Society, Sydney, Australia, ISBN 978-0-9946261-0-3

Application of the method of manufactured solutions in code verification
in geomechanics

A. Khoshghalb & O. Ghaffaripour
UNSW Sydney, Sydney, Australia

K. Zamani
Wood Rodgers Inc., CA, USA

ABSTRACT: The paper presents the application of the method of manufactured solutions (MMS) as a verifi-
cation tool for numerical codes in geomechanics. For this purpose, a coupled flow and deformation code for
poro-elastic media developed using FORTRAN programming language based on the edge-based smoothed
point interpolation method (ESPIM) is verified. In the ESPIM, the problem domain is spatially discretised us-
ing a triangular background mesh, and the smoothing domains are then formed on top of the background
mesh. The polynomial point interpolation method (PIM) combined with a simple node selection scheme is
adopted for creating nodal shape functions. Verification of the code is performed through an example in
which independent manufactured solutions (MSs) for displacement and pore pressure fields are constructed as
functions of both space and time. The solutions are then used to obtain the source terms of the governing
equations, and boundary conditions. The problem is solved numerically followed by a thorough order of accu-
racy study. The steps required for a thorough code verification is detailed. The study shows that MMS is an
excellent tool in verifying the code, and that the tested code passes the order of accuracy test successfully.

1 BACKGROUND This paper first presents a brief description of the
differential equations governing the behaviour of
saturated porous media. The numerical model of the
problem is then developed through discretisation of
the governing equations in space and time. Then a
brief description of the method of manufactured so-
lutions (MMS) and order of accuracy study is pre-
sented. Accordingly, an in-house fully coupled flow
deformation code written based on a meshfree meth-
od called smoothed point interpolation method
(SPIM) is verified to provide an example of the steps
required for code verification for coupled problems
in geomechanics using MMS.

Different techniques are available for scientific code
verification. The least reliable code verification ap-
proach is to seek an expert opinion on the outputs of
a code (Roy, 2005). There are also some simple tests
that can be performed to detect any potential prob-
lem with a code, such as the geometric symmetry
test, and the conservation tests in which conserva-
tion of different variables such as mass and energy is
evaluated according to the physics of the problem of
interest (Oberkampf and Roy, 2010). Another com-
mon verification approach is code-to-code compari-
son which includes comparing the results of two
codes with the same mathematical and physical ba-
Sis.

These approaches are all useful, but cannot be 2 GOVERNING EQUATIONS
used as a substitute for a rigorous verification as-  According to the theory of mixtures, a saturated po-
sessment (Oberkampf and Roy, 2010). Discretisation ~ rous medium is assumed to comprise two continuous
error evaluation is another criterion in which the  interacting continuum phases, solid skeleton (or sol-
numerical results from a discrete model obtained id matrix) and pore fluid. The general equations
from spatial and/or time discretisation are compared  governing flow and deformation in a saturated de-
with an exact or benchmark solution (Oberkampf  forming porous medium assuming an incompressible
and Roy, 2010). This type of verification should al-  solid phase are expressed as follows (Lewis and
ways be accompanied with a discussion stating  Schrefler, 1999),
whether the discretisation error is small enough or
not. Convergence test is the assessment of the ratein 0 '6+F =0 (D)
which the discretisation error is reduced as the mesh Kk
size decreases. A more comprehensive version of diV{—(VP +,0Wg)}=awl'9+diV(f1) (2
this verification test is the order of accuracy study. w
The order of accuracy Study not Only concerns stud- where 5 is the differentiation matrix, V is the gra-
ying the error reduction rate, but also compares this  dient operator matrix defined as V=0'8, with
rate with the theoretical order of accuracy, often re- & _ 1 O]T _and div stands for the divergence

ferred to as the formal order of accuracy. _ o
operator. In these equations, bold imprints denote

1171



vectors and matrices. 6 is the total stress vector with
o =Dsc+ pd, £=0u is the Cauchy small strain vec-

tor, D is the elastic stiffness matrix, p is the pore

water pressure, u is the soil displacement vector, F
is the vector of body force per unit volume, g is the

gravity acceleration vector; kis the intrinsic perme-
ability matrix, g, is the water dynamic viscosity,

p; is the water density, and a, =nc,,, where n is

the porosity and ¢ is the water compressibility.

3 EDGE BASED SMOOTHED POINT
INTERPOLATION METHOD

In the current study, the generalised smoothed Ga-
lerkin (GS-Galerkin) weakened weak formulation
(Liu and Zhang, 2013) is employed to discretise the
governing equations. For this purpose, smoothing
domains are constructed on top of a triangular back-
ground mesh and a constant smoothed strain is as-
signed to each smoothing domain. Construction of
the smoothing domains is performed based on the
edges of the triangular background cells. A novel
approach is adopted for taking the coupling effect of
solid and fluid phases into account (Ghaffaripour et
al., 2017). To secure non-singularity of the moment
matrix, a simple node selection scheme is employed
in which three nodes of the cell hosting the Gauss
point of interest are selected as the supporting nodes,
and the polynomial point interpolation method
(PIM) (Liu and Gu, 2001) is considered for determi-
nation of the nodal shape functions for both fluid
and solid phases.

Constant strains are assigned to each eadge-based
smoothing domain which can be obtained from the
following integration:

g, = ( JF;D Lnu(x)dF) / AP 3)

where €, is the constant smoothed strain over the
kth smoothing domain with the boundary T'}", 4°"
is the area of the k th smoothing domain, and L, is
the matrix of the unit outward normal vector.

4 SPATIAL AND TEMPORAL
DISCRETISATION

The governing equations (1) and (2) are discretised
adopting the GS-Galerkin method, as follows:

KU+QP=F, “)
Q'U-HP-a SP=F, (3)

where U is the vector of nodal displacements, P is
the nodal pore fluid pressure vector, F, is the vector

of nodal forces, F, is the vector of nodal fluxes,
andQ, S and H are the global property matrices of
the system which are evaluated by assembling the
local matrices obtained for each smoothing domain.
For more details in this regard refer to (Ghaffaripour
etal., 2017).

Using a novel three-point time marching ap-
proach with second order accuracy (Khoshghalb et
al., 2011), equations (4) and (5) are discretised in
time as follows:

AKU[+0(A[+AQP[+0(A[ :AFs[+aAl (6)

AQTUZ+aAl‘ _(AtH+AM)PT+0!AI :AtF‘I;:aAI +

(7)
BQ'U -CQ'U"™ - Ba, MP' + Ca, MP'"™

where « 1is the growth factor in the time discretisa-
tion scheme.

5 ORDER OF ACCURACY STUDY

The order of accuracy study is a rigorous code veri-
fication test, which examines whether or not the dis-
cretisation error of the numerical solution is reduced
at the expected rate (Roy, 2005). In the order of ac-
curacy test, the order of accuracy for the numerical
scheme is obtained as the mesh and the time step are
systematically refined by evaluating the reduction
rate of various norms of the solution discretisation
error over the domain. The error norms that are often
used are L, and L . For any state variable w (u,, u,
or p), these error norms are defined in this study as
follows,

’

nl]
L, = ”wa -w' || = max|w,.a -w'
i=1

®)

1 & 2
L, =\/n—,2(w? -w) ©9)
L =l
where L is the infinity norm and L, is the second
norm. w* and w" are the analytical and numerical
solution vectors for the state variable of interest, re-
spectively, where w" and w are the entries of these
vectors for each node of interest. The variable 7 is
the total number of field nodes on which no essential
boundary condition is applied.

5.1 Numerical order of accuracy

Oberkampt and Roy (2010) proposed an approach to
obtain the spatial order of accuracy in transient prob-
lems. To this end, neglecting the higher order terms,
the discretisation error of the equations presented at
ith spatial discretisation and jth temporal discretisa-
tion can be written in the following form

Ef = B+ B+ 0 )+ 0(z) ) (10)
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where 1, and r, are the orders of accuracy in space
and time, respectively, g, and p, are the coeffi-
cients of spatial and temporal terms, respectively, /4,
and 7, are normalized spatial and temporal discreti-
sation sizes corresponding to the ith spatial discreti-
sation and ; th temporal discretisation, respectively,
and L is the error norm used for order of accuracy
study (L=L, or L ). The higher order terms,
O{h].”“+l and OST;T“ , can be neglected if the spa-
tial and temporal discretisations adopted are in the
asymptotic convergence range. The asymptotic
range is defined as the range of discretisation sizes
where the lowest-order terms in the truncation error
dominate. For the developments to follow, it is as-
sumed that the solution is in asymptotic range; how-
ever, it is noted that the identification of the asymp-
totic range may be challenging for complex
scientific computing applications (Oberkampf and
Roy, 2010).

To obtain the spatial order of accuracy of the
code, a constant time step is selected (j =c) render-
ing the temporal discretisation error term in equation
(10) a constant. Spatial discretisation errors are then
found through systematic mesh refinements. Ne-
glecting the higher order terms, for three spatial dis-
cretisations (i =1 to i =3), we have
E. =B+ B (1)
Exploiting the constancy of the temporal discretisa-
tion error term, we then have
Ezﬁ - E(f—l)c = ﬁh (hirh - hirfl) (12)
If the exact solution is known, the errors can be
evaluated for each numerical solution. Thus, we

have
E.—Ey, W —h _(h/h)" -1 13)
By Bse =y 1= ()"

Now, introducing the spatial discretisation re-
finement factor R=/h,/h =h,/h, (i.e., the ratio be-
tween element sizes of two consecutive meshes in
the mesh refinement study), the observed order of
accuracy for spatial discretisation, 7, can be ob-
tained from equation (14) as follows

L (B
b lnRhl(Ech—Ech) (15)

This numerical order of accuracy is then com-
pared with the formal order of accuracy, obtained or
estimated from a truncation error analysis of the dis-
crete equations or interpolation theory, depending on
the numerical solution scheme adopted (Roy, 2005;
Choudhary et al., 2016). If the discretisation error of
the numerical solution does not reduce monotonical-
ly, or if the order of accuracy obtained from the nu-
merical solutions fails to match the formal order of
accuracy, these could be indications of a probable
coding mistake or algorithm inconsistency.
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As can be seen, the exact solution to the govern-
ing equations, which is often unavailable, is required
in this procedure. A method to address this difficulty
is discussed later in this paper. It is also worth noting
that the temporal order of accuracy can be obtained
in a similar fashion based on several analyses using
same spatial discretisations, but different temporal
discretisations. The temporal order of accuracy is
not discussed in this study due to the length limita-
tions.

It is worth mentioning that there is no iterative
procedure involved in the problems studied in this
chapter. It is also assumed that the round-off error is
negligible compared to the overall discretisation er-
ror of the solutions

5.2 Formal order of accuracy

The formal order of accuracy is the theoretical rate
of convergence of the discrete solution to the exact
solution to the mathematical model. For simple
mathematical models and  simple  solu-
tion/discretisation methods, this can be obtained us-
ing truncation error analysis of the discrete equations
or interpolation theory. For example, when finite dif-
ference method (FDM) is used for the solution of a
parabolic equation, the formal spatial order of accu-
racy can be obtained using a truncation error analy-
sis (e.g., (Roy, 2005)).

In this study, the ESPIM along with a three point
time discretisation technique is applied to coupled
flow and deformation problems in two phase satu-
rated porous media. Due to the complexity of the
governing equations and the numerical solution
technique adopted in this study, determination of the
spatial formal order of accuracy directly from the
governing equations is difficult, if not impossible.
Hence, another approach, called the residual method,
is adopted for estimation of the spatial formal order
of accuracy. In this approach, the exact solution to
the mathematical model is substituted into the dis-
crete governing equations. The exact solution to the
mathematical model does not satisfy the discrete
equations, and it can be shown that for linear prob-
lems, the remainder (referred to as discrete residual)
approximates the spatial truncation error
(Oberkampf and Roy, 2010). Therefore, by perform-
ing a systematic mesh refinement (with a constant
time discretisation), and evaluating the discrete re-
sidual in each case, the reduction rate of the spatial
truncation error can be estimated, which is the spa-
tial formal order of accuracy of the numerical
scheme.

5.3 Method of manufactured solutions

As explained earlier, exact solutions to the govern-
ing equations are required in an order of accuracy
study to obtain the numerical orders of accuracy.



However, except for a limited number of simple cas-
es, exact solutions are often not available for real
geotechnical engineering problems with complex in-
itial and boundary conditions. Even when exact so-
lutions are found for such complex problems, they
are often resulted from significant simplifications
assumed in the problems.

Due to the unavailability of the exact solutions in
most cases, the method of manufactured solutions
(MMS) can be utilised as an alternative approach to
provide a straightforward and general procedure for
generating analytical solution of complex system of
PDEs for code verifications. As far as the adopted
manufactured solutions (MSs) are not mathematical-
ly problematic, their physical meaning is of no im-
portance in conducting an order of accuracy test
(Roy, 2005).

The basic idea behind the MMS is to manufacture
exact continuum solutions to the PDEs of interest
(Roache, 2002). To this end, analytic solution to the
PDEs are first assumed and next, the selected MS is
substituted into the PDEs to calculate the source
terms which guarantee that the selected MSs are in-
deed exact solutions to the governing PDEs. The
source terms are distributed terms which should be
applied in the code at each node of interest, accord-
ing to the nature of the ESPIM code in hand. The
source code must, therefore, be accessible and open
to modifications so that such an implementation can
be made when using the MMS. The MMS may
therefore not be applicable to commercial codes, un-
less the source code can be accessed.

6 NUMERICAL EXAMPLE

A 2mx2m weightless isotropic saturated porous
medium is considered in a plain strain setting, in
which - Im<x<1m and 0<y<2m. The state
variables u,, u, and p are assumed known on the
domain boundaries where the essential boundary
conditions are imposed. Linear elasticity is assumed
for the mechanical behaviour of the solid phase. The
material parameters adopted in the numerical anal-
yses are given in Table 1.

Table 1. Material properties for the numerical analyses.

Parameter Value

Young's modulus (£) 10,000 kPa
Poisson's ratio (v) 0.3

Porosity (n) 0.5

Intrinsic permeability (k) 1010 m?

Water density (pw) 1.0 t/m?

Water dynamic viscosity (uw) 106 kPa.s
Compressibility of fluid (cy) 4.54x107 kPa™!

A time step increment of A7=0.1s and a time
step growth factor of a=1.0 are assumed for the
numerical analyses to obtain spatial order of conver-

gence. Five different models using different back-
ground meshes are used for evaluating the solution
errors at a nominal time of t=10s, which are de-
tailed in Table 2. The background mesh sizes in Ta-
ble 2 are obtained from 7 =~/Q/ n, —12‘ (Liu and
Zhang, 2013), where Q is the area of the domain
and n,_ is the total number of nodes.

Table 2. The properties of different mesh configurations for the
numerical examples.

Mesh Number Number  Mesh
number ofnodes  ofcells size (m)
1 41 64 0.370
2 145 256 0.181
3 545 1024 0.090
4 2113 4096 0.044
5 8321 16384 0.022
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Now, a solution with a “proper” analytical func-
tions must be “manufactured” for this problem. The
MS does not necessarily need to be physically realis-
tic and can involve general analytical functions. The
following set of MSs are selected according to the
general recommendation by Oberkampf and Roy
(2010),

1, =0.02+0.01(x> =1)’ () —23)* cos(Z)

5 3 (16)
X (3 sin(TTDC) -2 sin(%) + cos(nxy))
u, =—0.01+0.01(x* =1)° (3> =2y)’ sin(%)
3 s (17)
X (sin(—nx) + 2 cos(my) — sin(ﬂ))
4 4
p=200+5(x* ~1)*(»* —2)* cos(%)
1 (18)
x (3 sin(mx) — cos(STny) - COS(?))

Following recommendations by Bond et al. (2007),
the sinusoidal parts of the MSs are multiplied by
(x> =1)’(»*—2y)" to ensure that the boundary con-
ditions for the MSs are simple, similar to the bound-
ary conditions relevant in real applications of the
code. A trigonometric function of time is also multi-
plied to the MSs to induce time dependency of the
solution.

The variations of the discretisation error norms of
the numerical solutions are depicted in a logarithmic
scale in Figure 1 as a function of the mesh size for
this example. Presented in Figure 2 are the observed
(or numerical) orders of accuracy for the three state
variables using L, and L, norms of the discretisa-
tion error, obtained from equation (19). It is ob-
served that the orders of accuracy are close to 2, es-
pecially when finer discretisations are used.
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Figure 4. Formal spatial orders of accuracy at =10 s

The formal orders of accuracy for the state varia-
bles, obtained using the procedure explained earlier
in section 5.2, are illustrated in Figures 3 and 4. It is
observed that the formal orders of accuracy ap-
proach 2.0 for both L, and L, norms as the element
size reduces, which is in excellent agreement with
the numerically observed convergence rates. The
formal orders of accuracy, however, slightly devi-
ates from 2 as coarser discretisations are used. This
problem is due to inability of coarse background
meshes in accurate prediction of the complicated
MSs adopted in equations (16) to (18).

In linear analyses, the study of the accuracy and
convergence of the numerical solution are often per-
formed in terms of the energy error norm, E,, de-
fined as,

5L S ] kol o

where & and g, are the analytical and numerical
strain vectors corresponding to the kth smoothing
domain. Figure 5 shows the numerically observed
spatial convergence rate of the energy norm for dif-
ferent nodal discretisations at 1 =10s.

It is known that for smooth solutions like the
adopted manufactured solution in this example, the
order of accuracy for strain energy is one order low-
er than that of the displacements (Belytschko et al.,
2000). Noting Figure 5, it can be seen that the ex-
pected first order accuracy in strain energy is also
recovered as the mesh becomes finer and the solu-
tion enters the asymptotic range.

From this example, it can be seen that the formal
spatial order of accuracies are recovered by the nu-
merical solutions, and the code is therefore verified,
spatially, for the selected MS.
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7 CONCLUSION

The application of the MMS combined with order of
accuracy study for code verification in geomechan-
ics was presented in this paper. The procedure for
code verification was described in details for an ES-
PIM in-house code for coupled flow and defor-
mation analysis of poro-elastic media developed in
Fortran. Verification of the code was performed
through an order of accuracy study in space domain
with a manufactured solution for displacement and
pore pressure fields that are constructed as functions
of both space and time. The results showed that the
code successfully passes the spatial order of accura-
cy test.
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