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Separable Yield Surfaces to Correlate Axi-Symmetric, Plane
Strain, Simple Shear and Multiple Stage Tests

by

T. K. CHAPLIN, M.A., Ph.D.
Senior Lecturer, University of Birmingham, England

SUMMARY .
work is needed.

Separable yield surfaces were first considered in 1971;

no particular expression for plastic

Plastic straining of 'wet' clay is taken as (2) anisotropic comsolidation steps, using

the normality law, plus (b} straining in one mode of deformation while there is no strain in one or more

other modes.
function.

The stress-strain curve for each mode is empirically related to the corresponding flow rate
The yield surface is assumed unchanged by the deformations.

In plane strain and shearing, when & single mode of deformation is applied, two or more cohesive

resistances are reduced;

the new steepest—ascent principle shows how the reduction might be shared.
Examples of different volume change conditions are given.

It is hoped that improved forecasts of

three—dimensional deformations under working stresses will be made possible by this fully-computable

'Bir—-Clay' model.
1 INTRODUCTION

The concept of a separable yield surface was
first presented at the Roscoe Memorial Symposium at
Cambridge in 1971 (Ref. 1). Tew clays on the
'wet' side of the critical state seem likely to
have a yield surface (locus) differing much from a
separable approximation. In this paper, simpler
modes of deformation for soil testing are studied
with separable yield surfaces, a new sieepest—
ascent principle and an empirical correlation to
get a stress-strain curve from the flow rate
function.

There may not be any reversal of shear strain
or volumetric strain. Strains giving contraction
in length or volume are taken as positive.

Changes in the shape of the yield surface are
ignored. It is assumed that the normality law
applied to changes at comstant stress ratio, and
that they are added to other plastic strains.
Elastic strains are taken as zero. Close to the
critical state, the yvield surface need not be para-
1lel to the space diagonal in principal effective
stress space.

2 NOTATION

The p superscript denotes plastic strain. The
dot notation need not mean coastant-rate change.
¢!  Cohesion intercept in effective stresses.

e Void ratio, or 2.71828...
f'(s) A flow rate function.

f(s) A yield function,

P Mean effective stress (cé+c§+c;)/3.

P, Equivalent isotropiec consolldation pressure.

P, Critical pressure, i.e. mean effective stress
for given void ratio.

q Stress difference 0,-0,.

s A mobilization ratio (of the cohesive resist-
ance opposing some mode of deformation),
2.8, 9/Gnax-

t Time.

u Pore water pressure.

%, v, £ Axes, e.g. x for the sample axis.

A Cross—sectional area.

Co, Compression index in consolidation test.

K Coefficient of earth pressure, c}/ci.
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Ko K for zero lateral strain

L Length.

v Volume.

o Factor of proportiocnality.

¥ Engineering shear strain.

8 Change in following quantity.

e Strain, alsoc g5 ~ £¢/3.

£a Axial strain.

g¢ A strain measure.

gv  Volumetric strain = exteytez .

L Constant relating actual strains in one mode

to theoretical strains.

n g/p.

[ Gradient of swelling line.

X Scaling factor for a set of strain-increments;
gradient of compression line in conseolidation.

o Total direct stress.

o' Effective direct stress.

6a Axial stress in axi-symmetric test.

Oc A stress measure.

Oermax Maximum value of ¢, at current void ratie.

de Equivalent pressure (isotropic consolidation).

om Mean total stress (ox+oy+oz)/3.

dr Radial stress in axi-symmetric test.

{ox, 0y, oz Total direct stresses

{ox, oy, oz Effective direct stresses.

T Shear stress.

$" Angle of shearing resistance for effective
stresses.

i Change in following quantity.

M (capital u) Critical state constant qmax/pu.

3 MAIN DEFINITIONS
Separable yield surfaee: can be put for n axes as

F = fl(sl) + f?_(sz) + ... fn(sn) (1)

where each term is a positive yield funotion.

Mode of deformation: has fixed ratios of all
direct and shear strain increments.

Measure of strain: A linear combination of direet
and shear strains (or strain—increments}), expressed
by a single quantity, e.g. volumetric strain.

Measure of stress: A linear combination of stresses,



direct and shear. Examples are the stress dif-
ference q = oyx—dz and the mean effective stress.

Cohesive resistanee: One which could be made
negligibly small by large strains in a mode ortho-
gonal to the one it opposes. The critical pressure
Pu is not a cchesive resistance.

Mobilization ratio: Ratio of a stress measure to
its maximum for the current void ratio.

Orthogonality: In principle, change in a measure
of stress (or strain) would not change any measure
orthogonal to it.

TABLE I
BASIC ORTHOGONAL SETS FOR STRESS AND STRAIN

Txs oy, Ggs Txys Tyzs Tax

Egwy Ey: Egy ny» sza Yax

Admissthle measures: The sum of each stress
measure times the corresponding strain measure
accounts for all the work done; the normality law
applies to admissible measures.

4 SEPARABLE YIELD SURFACES

For Mode No. 1 of deformation the mobilization
ratio is Sy» and so on.

In Equation 1, each term varies from O to 1 as s
varies from O to 1. Because F is separable and
3f,.(s,) /68, = 0 for r¢k, the rth term in the

partial {or total) differential of F is
df_(s..)
. _ QLpiSy
fr (sr) - dSr (2)

called a flow rate funetion with unit area above
the s axis from s = 0 to s = 1, with non-negative
slope to ensure that the yield surface is convex.

Example

For a 'triaxial' compression test we take
Mode 1 as axi-symmetrie shearing at constant volume
in Mode M1, defined as

. . . 1 1 1
€x P Ey P €2 =3 1 "F ¢ T F . (3)

niform inwards strain, Mede M2 (as in isotropic

consolidation), could be defined as

éx : éy : éz= 1 :1:1. (4)

and used for Mode 2 ia this test. The flow rate

functions are
fi(sl) = 25, (5a)
£1(s,) = 1.0, (5b)

as shown in Fig. 1. These correspond to a Tresca
type behaviour in Mode 2 and the Lévy-Mises flow-
rule in Mode 1. The yield functions are

£,(5)) = s? (6a)
£,(s,) = s, {6b)

as in Fig. 2. The separable yield surface in s
space (Fig. 3) is then

s% + 8, = 1 (7)

At the end of consolidation the conditions are:

§4 %0, 8, =1, q=0,p = pe. At the end of the
test, we have 5, = 1, s 0, 9 = qmaxs P = Pu-

In between the values o% q and p vary linearly with
85 and P
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f'es)

0
O MOBILIZATION RATIO § i

Fig. 1 ¥low rate functions

O MOBILIZATION RATIO §

Fig. 2 Yield functions

!
$2

O § i

Fig. 3 Separable yield surface

5 EMPIRICAL DERIVATION OF STRESS-STRAIN CURVES

An empirical transformation to derive the Voce
stress—strain curve {the simplest) from the Tresca
type of flow rate curve, was given in Ref, 2 as

£ (t)

0

where t is merely a variable replacing sy, and the
constant Ly scales down the strains to those for a
real soil, being typically around 0.0l in shear.

When Equation 8 was applied to the Levy-Mises
flow rule, Equation 5a, it was shown in Fig. 2-74
of Ref. 3 to give good agreement with actual
stress—strain curves for two clays.

6 ORTHOGONAL MODES OF DEFORMATION

¥f two quantities are orthogonal to each other,
in prineiple changes in one do not affect the other.
Their vectors will be normal to each other.  What
third measure of strain would be orthogonal to
those of Equations 3 and 4? Assume &, : sy : EZ =

A : B : —(A+B) to match Equation 4.
Equation 3 gives

~ta - §B + F(a+B) =

whence A = 0. One choice for Mode M3 could be

=0 :+} -1, (%)

Ex ! By I €
7 MEASURES OF STRAIN~INCREMENT
To express with one quantity the strain in one

mode of deformation, we define a quantity varying
linearly with the component strains, with each



coefficient proportional to the relative size of
that component. Examples are

By = %éx _.%éy - ééz. (Mode MI)  (10)
€op = €y = Ey + Ey + By (Mode M2) (i)
Ee = dey - be, {Mode M3)  (12)

We could also have chosen stress measures first,
then found admissible strain-increment measures.

8 ADMISSIBLE MEASURES OF STRESS

Assuming these exist, they will be correctly
coupled with measures of plastic strain-increment
by the following procedure:

(i) Set up the plastic work equation with known
stresses and plastic strain~increments on one
side, and the unknown ones on the other.

(ii) Compare texrms in £P (if present) on both sides,
to derive the first equation, and do the same
for eg, el, vB,, ete.

(iii) Solve for the unknowns (called 4, B, C).

For Modes M1 to M3, with stress measures given
by Equations 10 to 12, the work equation is

U€P+UEP+OP

v = Acly+ Belo+ ceBy (1)

The three equations derived from Equation 13
give (with B as ewmcess over pyl:

A=o0cy = 20 - G; - o, {Mode ML) (14)
B =g, = (ox+ G§ + ;) /3 (Mode M2) {15)
C=o0gq + c§ - a, (Mode M3) (16)

where ¢_, etc. are stress measures {orthogonal)
which go with the orthogonal set of plastic strain-
increment measures EPI, etc.

9 PATHS QF STEEPEST ASCENT

During controlled strain—increments in one
mode of deformation with stresses on the yield sur-
face, if at least two other medes exist, how will
their resistances decrease? The following pos-—
tulate does not seem to have been tried in soil
plasticity (or perhaps im any field).

We use paths of steepest ascent when finding
stress paths over the yield surface, its equation
being separable as Equation 1. Moving from
(815 855 -+ 8 ) to (s ¥As), S,+As,, ... S FAS n)s
very close Lndee&, the As values obey Equatlon 17

it S S A (17)
fr

where £1 is the rth flow rate function. The mob-
ilization ratios which can f£all as they wish will
permit the path of steepest ascent by changing

in divect proportion to components of the normal
to the yield surface. This makes no assumption
about the orientation of principal stresses in
relation to principal strain-increments.

10 FOLLOWING STRAIN PATHS AND STRESS PATHS
(a) Strain constants for shear strain measures

It is assumed that one mode of deformatrion is
always inwards uniform straining (Mode M2), and all

other modes are in shear alone. If ; in Equation
8 has been found for one shear mode, what are the

values for other shear modes in Zsotropic clay?
Newmark (Ref. 2) suggested use of the octahedral
shear strains given by Equation 18:

Foce = ((e1me) 2+ (eyme ) 24 (g4 ) D) E. (18)

where suffices refer to principal axes. Table EI
shows how octahedral strain-increments are rather
similar for modes of shearing mentioned, with
simple shear as Mode M4:

TABLE IT

QCTAHEDRAL SHEAR STRAIN-INCREMENTS

Relative Sizes of
Strain-Increments .
Mode No. Yoet
Ex Ey Eg Yxz
M1 T N Ry
M3 o +i - 0 0.4914
M4 0 0 0 1 0.4914

(b) Yield surfaces in s space

It is sometimes convenient to work in a space
of mobilization ratios, where sr = Ocr/Ocrmax» SO
that Equation 1 can be used directly. What should
be chesen for plastic strain—inecrement measures?
Normality applies with fi(s,) = l'écrgcrmaxfpe’ or
a similar ratio unaffected by void ratio, (This
point was not made in Ref. 1). We can then write
for constant stress ratio

€or = A E' (8, )Pe /S crmaxe (19)
(¢) Prescribed strain-increments

From the given strain-increments, the plastic
strain—-increments are calculated in the measures of
strain. Applying the normality rule from Equation
19, the largest possible set of positive plastic
strain-increments is taken for a small step of
K-consolidation at comstant stress ratio. The
excess (if any) is used to move round the (dimen-
sionless) yield surface, which will reduce at least
one cohesive resistance. 4 simple example shows a
'triaxial' test, where e, is axial strain.

Ezample
. Isotropic
Shearing Straining
Mode No. 1 2
Stress measure q P
Strain measure £ = E3— %év Ev
P . . p-pu
Mobilization ratio s; = dq/qpax 8, = oDy
Flow rate function £}(s1)} = 2597 f£3(sp) =1
Yield function £(8;) =852 £,(s,) = s
Strain multiplier ;1 = 0.006 g, = 0.050
Current state g, = 0.6 s, = 0.64
Maxima, k¥/m? dmax = 162 Pa~Py = 120
Current values, E Pe = 300
kN /m? ¢ 180
Consolidation A
constant T © 0,085
The current stress measures are q = Qpu. X §)



= 162 x 0.6 = 97.2 kN/m?; P = Pu * (pg pu) % 2,
= 180 + (300~180) x 0.64 = 256.8 kN/m?,

We impose strain-increments AgP = 0,0010,
Aefl = 0.0003. What are the changes in q and p?

. ..In K-consolidation, from Equation 19 we have
eP/ef = (£{(s1)/E3(s5) X (Pe=py) /Gmax = 0.889.
The 1argest multiples are 0.000266 (shear) and
0.00030 (volume change), leaving 8=P = 0,001000 -

0.000266 = 0.000734 as excess shear strain to be
used in moving round the yield surface. For a
volumetriec strain of 0.00030,
Ao

(log, (p+&p) tog,p) Tie = (0.00030.
For small &p, using ép/p = 6q/q we have

Sp A _8g A

b Tre q T7e 0.00030 (20)

+ 0.91 kN/m2,
0.34 kN/m*.

whence &p = 0.,0003 x 256.8 / 0.08
and 8gq = 0,0003 x 97.2 / 0.085 =

From Equatien 8, for a small change in one mode,

cfrlsy)

= i T 21
sel T Sp (21)
As £](s)) = 1.2, ¢, =0, 006 and 8§<P = 0.000734,
- 0.6
In the 2nd stage Ssl 67653—T75-0.00073& 0.0408,
s0 §q = 162x0.0408 = +6.61 k¥/m?. On the surface,
f'(s Yas, 4 .. Eplsp) sy = 0 (22}
So s, = 6slf1(sl)/f (s,) = -0,0408x1.,2/1 = -0.049
and 8p = {pg—p,)85, = 120( 0.049) = —5,88 kN/m?.
The totals are (01 #0.91 # 6.61 = +7.5 kN/m2,
(ép = +0.34 - 5.88 = ~=5,5 kN/mZ.

(d) Prescribed stress increments

First come the changes proportional to present
stresses, i.e. K-consolidation, then changes which
inerease some cohesive resistance. Equation 8 or
21 is used first for the strain~increments, then
Equation 22 {(and 17 if a steepest ascent path is
followed) to find other changes.

11 A¥T-SYMMETRIC TESTS RELATED TO PLANE STRAIN
(a) General

The shear mode of straining has to be closely
reproduced by the assumed modes, and changed when
necessary. Ko-consolidation uses axi-symmetric
shearing, which can continue during 'triaxial’
shearing to failure, with or without volume change.
If plane strain shearing is used for compression,
one shearing mode must be plane strain; the other
orthogonal shearing mode has to be deliberately
applied if there is any volume change.

(b)Y Xp-consolidation

Taking x as the sample axis, &y = ¢z = 0, and
Mode 1 is axi-symmetric shear (defined earlier as
Mode M1), Mode 2 is isotropic straining (Mode M2)
and Mode 3 is an orthogonal shear mode (M3) which
is not applied. For zero lateral strain, from
Equations 10 aad 11,

€cp ¢ Epp ¢ Fe3 ® 1:3:0. (23)

Soil constants of the previous example in Equatzons

14-15 gives 0. gpax = = 2x162 = 324,

Tcomax © KN /m?,

From Equation 19, the ratio of flow rate functions
£! 1881 Y E! 2(8,) = (324x1) / (120x3) = 0.9, With
flow rate functions 251, 1, 2s4 and yield functions

s S5 52 3, we find 5; =0, 45, 5, = 0. As the sum
0% the yleld functions is always 1, f,5(sg) = 0.7975,
whence s; = 0.7975.

The stress measures are g, = 324x0. &5 145.8,
Ogp = 120x0.798 = 95.7 (above pu), Oq . At
the void ratio giving gmax = 162 szwsymmetrzc
compression, pe = 300, py = 180 kN/mz, during Xg
consolidation gy = 324.3, o = 251L.4, q = 72.9,
= 275.7, Ko = 0.78 (very Klgh)

(c) Axi-symmetric shearing

After consolidation e = 0.91, with data mainly
as the example in 10(e¢)} but z, = 0.01 and ¢, = 0.05
based loosely on ¥ig. 7a of Ref. 3 and Fig.” 2 of

Ref. 4; 1latter shows London Clay follows Voce type
of stress-strain curve very closely during swelling.

Undrained and drained 'triaxial' compression
test simulations are shown in Fig. 4.

300 1

oy =300 kN/m2
q 1SO. CONS,
DRAINED
200+

UNDRAINED

100 ¥,

AXIAL STRAIN €., %

200 1 o 5 10 15 20
U e\?
100+ =~ DRAINED
1 3s evé,1so. CONS.
5 10 i5 20
O o O ) 1 i 3

Fig. 4 Simulated '"triaxial' tests
(@) Plane strain tests

In shear, Modes 1 and 2 are Modes M5 & M6
below:
Ezz’f’éio

£x @ £y ¢ : ~ (Mode MS) (24)

1

g t By ! £g = +h 1 Y 1 s (ode MB) (25)

Strain-increment measures, like Equation 10, are

= Je, ~ey

ECS {Mode MS5) {26)

Eeg = —ptx * 3by - 16,  (Mode M6)  (27)

Admissible stress measures, like Egquation 14, are

Upgg = Oy — O {Mode M5) (28)

Oeg = Oy T 20§ -0, {(Mode M6} (29)
Their maxima are assumed to be 1.1547x162 = 187.06;
2x162 = 324 kN/m?,

Fig. 5 shows an undrained plane strain test after
Ko consolidation as given in (b) above. In this
case one might find the effective stresses at the
end of Ky consolidation, and then to substitute the
values directly into Equation 28 and 29. But they
could equally well have been found by writing
expressions for ge5 and ogg in terms of the stress
measures 0 and Ogp, using symmetry.



Units kN/m2 ;
soof ™ G/,
200 -
100 %

AXIAL STRAIN €g, 9

2 4 b 8
@] L 1 1 )
100 | u

2 4 5 8
O L 1 1 1

Fig. 5 Undrained plane strain test.
12 SIMPLE SHEAR TEST

As in K consolidation, g€y = g5 = 0.  Mode 1
is axi-symmetric shear (Ml), Mode 2 simple shear
(M4), Mode 3 isotropic strainm (M2). If ey/vxz = £
strain—increments are 2f : 1 : £/3, with measures
of strain écl t € w d écz =f£/3 :1 : £/3. With
constants as before, maxima of stress measures 162,
0.5x1.1547x162 = 93,53; 120 kii/m? (the latter is
excess over py) and Ko consclidation, Fig. 6 shows
an undrained test for constant oJy.

o) Units kN/m2

SHEAR STRAIN Y, %
6

2 4
O 1 Il 1

2 4 6 8

Fig. 6 Undrained simple shear test.

13 MULTIPLE STAGE TESTS

A simple technique is to raise cell pressure
in a drained 'triaxial' compression test when the
sample seems to be virtually at failure, and then
again bring it almest to failure, perhaps repeating
to get a third result. If one assumes that it is
valid to draw Mohr circles from these "failure'
stress states, some ¢ and ¢ values can be found.

The 'cuxrve-hopping' technique of Schmertmann &

Csterberg {Ref. 5) seems useful in clays with small
straing to failure, but preliminary experiments do

suggest curves would be unreliable in other clays.

Obtaining virtually full stress-strain curves

makes this technique particularly attractive.

14 CONCLUSIONS

An attempt has been made to develop a logical
way of handling shear strains to compare various
types of test. Using, say, octahedral shears to
find maxima of different stress measures, all the
21 independent terms of a 6 x 6 incremental stiff-
ness matrix could be found and used. Shear strain
affects direct stress and vice versa, needing 9
terms which 'elastic' theory cannot give. One
hopes new testing methods will give values for the
21 terms, at ieast crudely, throughout a test.

As an alternative to the finite element method,
there seems to be a distinct possibility that an
entirely different method could be developed for
attaining compatible displacements and stresses in
equilibriem, Since the soil moves according to
the equilibrium equations, which only involve
stress gradients, these can be related to strain
gradients by the same 2?1 incremental stiffness
terms mentioned abowe. At boundaries the fixed
position is simple to handle, and so is a known
displacement. Where the stress is controlled on
the boundary, calculations of stress would begin;
a least-squares analysis would give them,

As the elastic theory usually applied for
finite elements cannot include dilatancy (which in
this paper is implied to be an actual or potential
contraction), this proposed 'point equilibrium’
method would seem to permit any mass of soil or
excavation in soil to be studied. It is hoped to
follow up this possibility in the near future.
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