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Summary The strength-shape relationship of a pillar has been analysed by a mew physical model
keeping all internal and external factors affecting the compressive strength of the model material constant. The
model material has also been tested under triaxial compressive stresses. The effect of width-to-height ratio on
the compressive strength has been compared with the effect of confining pressure on the axial compressive
strength. The induced horizontal stress due to the shape of model pillar specimens under ultimate load has
been estimated. The relationship between horizontal stress and width-to-height ratio of a pillar sandwiched
between hard roof and floor under any value of vertical stress lower than the maximum vertical stress
(compressive strength) has also been estimated. Horizontal stress increases with an increase in width-to-height
ratio and vertical stress (depth).

1. INTRODUCTION : 2. EFFECT OF WIDTH-TO-HEIGHT RATIO
ON THE COMPRESSIVE STRENGTH
The shape of mine pillar is either square or

rectangular prism. The shape of a rectangular pillar For determining the effect of width-to-height ratio
is a function of the width-to-height ratio and length- on the compressive strength, it was tried to keep the
to-width ratio, and a square pillar is a rectangular size (volume) of specimens constant (1000 cm3).
pillar whose length-to-width ratio is one. From The effect of size on the compressive strength of 42
laboratory model studies of rectangular shape cubic models having edge dimensions of 34.3 mm,
specimens, Moomivand (1993) and Vutukuri and 50.1 mm, 70.6 mm and 102.0 mm was studied.
Moomivand (1993) showed that the length has no Statistical analysis of the compressive strength data
effect on compressive strength. The mode of failure of four groups using SPSS computer program
of all specimens was double pyramids and it did not showed that no two groups were different at the
change with length-to-width ratio. Also, it can be 0.05 level. All internal and external factors
concluded that the distribution of stresses inside the affecting the compressive strength of the model
rectangular shape specimens (pillars) is pillar specimens having different shapes have been
independent of its length. Therefore, the effect of kept constant in the tests.
shape on the compressive strength of a rectangular Square prismatic specimens having different
pillar is related to the dimensions of width and values of width-to-height ratios were tested. The
height, and the effect of width and height (width-to- compressive strength of the specimens increases
height ratio) on the compressive strength of with an increase in the width-to-height ratio similar
rectangular and square pillars is the same. to increase in the axial compressive strength due to
The effect of shape on the compressive strength the confining pressure in a conventional triaxial
of pillars is investigated by modelling and the test. The lateral stresses in a model pillar specimen
results are compared with the effect of confining related to its end constraint increase with an
pressure on the axial compressive strength of increase in the width-to-height ratio. The
model material in a conventional triaxial test. The specimens with width-to-height ratio from 0.25 to
horizontal stress in model pillar specimens under 2.0 failed completely after yielding. For specimens
ultimate load is estimated from this comparison. having  2<W/H<3.5, differences between
The horizontal stress is also estimated by compressive strength (yielding strength at periphery
comparison between strength-shape relationship of of the specimens) and breaking strength inside the
model pillars and rock mass strength criterion. The specimen increased by an increase in width-to-
induced horizontal stress as a function of width-to- height ratio. The core of model pillar specimens
height ratio and vertical stress (depth) of pillars has behaved in a ductile manner when W/H>3.5. For
been analysed. specimens with W/H>4, the axial load increased
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more than twice after yielding at the periphery and
a high percentage of the interior of specimens was
intact and had ductile behaviour.

Mode of failure of the specimens having width-
to-height ratio of 0.25, typifies double pyramids at
the ends and the area between the double pyramids
in the middle section of the specimen fails with
vertical cracks. It is concluded that the specimen at
the centre is under uniaxial stresses and at the ends
it is under triaxial stresses. When width-to-height
ratio increases, the distance between double
pyramids decreases, as at width-to-height ratio of
0.4 and 0.5 most of the specimens failed along their
diagonals. For W/H > 0.76; the mode of failure is
double pyramids and the double pyramids cross
each other at mid height of the specimens and
fracture angle approximately is a constant with

increase in the width-to-height ratio. The best
function to fit the results is as follows:
a
W
= O'cl(A"' B(ﬁ) ) ¢))

where o is the compressive strength in MPa;
G, is the compressive strength of cubic pillar
specimen and equal to 40.113 MPa for the
model material; and
A, B and o are constants and are equal to
0.588, 0.412 and 0.843 respectively.
When W/H =1; A+B=1 and 6 =c ;.
After analysis of the test results by different
equations, the following Bieniawski equation (1968)
in dimensionless form was found to be more close to
the results than other equations:

o= 001(0.64 +0.36 -}9 @)

The dimensioniess relationships for different
materials such as coal and model material under
different boundary conditions are very close to
relationships ~ derived for pillar  specimens
sandwiched between hard roof and floor. Crouch
and Fairhurst (1973) tested coal specimens under
two different platens of steel and sandstone. The
compressive strengths under the two different
boundary conditions are very similar.

EFFECT OF CONFINING PRESSURE ON
THE AXIAL STRENGTH

3.

For comparison between the compressive strength
of pillar specimens (o) and width-to-height ratio
and axial compressive strength (c;) and confining
pressure (c3), 36 cylindrical specimens of 44.75
mm diameter with diameter-to-height ratio of 0.44
were prepared from the same model material used
for modelling square prisms. The specimens were
tested in a conventional triaxial test under confining
pressures from 0 MPa to 35 MPa. The brittle-
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ductile transition occurred at the confining pressure
of 17.5 MPa and the axial compressive strength of
00.17 MPa. The results were analysed using
DataFit (1992) program to calculate the parameters
in Bieniawski criterion and Hoek and Brown

criterion. Bieniawski criterion for intact rock,
1974:-
o,=04 +Blo"3.6 3)
B
O g4 B; (f.i) 4
Oci O
Hoek and Brown criterion for intact rock, 1980:-
o193, |14+ m; I3 )
Od Od Cai

where o is the unconfined compressive strength of
cylindrical specimens with diameter-to-height
ratio of 0.44 (29.5 MPa),
B is a constant and equal to 0.697 for model
material;
B, is coefficient of triaxial strength and equal
to 8.33 for model material,
B, is coefficient of triaxial strength in
normalised form and equal to 2.943 for model
material; and
m; is coefficient of triaxial strength and equal
to 9.40 for model material.
Bieniawski criterion fits better the results than Hoek
and Brown criterion.

COMPARISON BETWEEN EFFECTS OF
W/H RATIO AND CONFINING
PRESSURE ON THE AXJAL
COMPRESSIVE STRENGTH

The relationship between compressive strength and
width-to-height ratio of the square pillar specimens
tested in a testing machine when 0.3<W/H<5.0 is
comparable with the relationship between axial
compressive stress at failure and confining pressure
in a triaxial test. For specimens with W/H>S5,
failure occurs around the periphery at the same
compressive stress. The specimens also undergo a
large amount of deformation as well as store large
amount of energy. Periphery of a specimen behaves
in a brittle fashion for any value of width-to-height
ratio and the core of the specimen behaves in a
ductile fashion when W/H>3.5. The current failure
criteria of rock are applicable up to the brittle range
and the mechanism of failure after transition from
brittle zone to ductile zone is unknown. Increase of
the compressive strength as a function of
confinement at core of a specimen with width-to-
height ratio greater than its critical value can be

risky.



If it is assumed that axial load is parallel to
height of a pillar, the distribution of horizontal
stresses inside a pillar under pressure have four
symmetric planes parallel to axial load and one
symmetric plane perpendicular to axial load at mid
height of a pillar. Therefore, distribution of stresses
from one pint to another point inside 1/16th volume
of a pillar having a particular shape and under a
particular vertical stress is a variable. In triaxial
test, distribution of confining pressure on the
surface of the cylindrical specimen is uniform and it
is well known that the fracture angle decreases with
an increase of confining pressure but the fracture
angle is approximately constant with an increase in
width-to-height ratio. For this reason, the
exponents o and 3 in Equations (1) and (4) are not
exactly equal.

The average unconfined compressive strength
of cylindrical specimens is equal to 29.5 MPa.
From Equation (1), compressive strength of a
square prismatic specimen having W/H=0.3 is equal
to 29.5 MPa. The compressive strength of the
square pillar specimens is divided by the average
unconfined compressive strength of cylindrical
specimens (29.5 MPa) and the relationship in
dimensionless form between ratio of the
compressive strengths and width-to-height ratio is
determined as follows:

o
oy (V)
O H
where A' and B' are constants and are equal to
0.799 (i.e. 1.359A) and 0.561 (i.e. 1.362B).
The relationship between axial compressive
strength and confining pressure, and compressive
strength-shape relationship are given in Figure 1. It
shows good correlation between the effects of width-
to-height ratio and confining pressure on the axial
compressive strength. The brittle-ductile transition
occurred at o; of 90.17 MPa. The maximum value
for width-to-height ratio in Equation (6) is equal to
5 for the model material. The compressive strength
(c,) of specimens having width-to-height ratio of 5
is equal to axial compressive strength of cylindrical
specimens (o) at brittle-ductile transition.

®

5. ESTIMATION OF THE HORIZONTAL
STRESS

Equation (4) is comparable with Equation (6). If o
(as a function of the width-to-height ratio) and o,
(as a function of o5 ) become equal, two ratios of
Se/c; and ©1/c; will be equal.

Therefore

A'+B' (—\gj ’ =1+ Bi(f_‘z:]ﬂ

Q)
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Figure 1. Comparison between effects of width-to-
height ratio (W/H) and confining pressure (CP) on
the axial compressive strength.

The horizontal stress (c3) of a specimen under
ultimate load is estimated as follows:
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where f(s) is shape function [ f()=A4B' (—\19 J '

9¢_ and the estimated
O]

horizontal stress under ultimate load can be
calculated from the following equation:

From Equation (6), o4 =

1

oy= (f(s) 1] B 10
J®\ Bj

In the same way the strength-shape relationship can

be compared with the Hoek and Brown criterion as
follows: ‘

a
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Equation (16) has two answers and the following is
the right answer for estimating c5:

2
03=0¢ -rgi-+f(s)—\/(jn}+f(5)) "((f(s))z'l)

an

2
o3= f()[- ) - ‘/(Z}+f(5)j —(f(S))2+1]

s

Relationships between estimated c; and width-to-
height ratio from Equations (9) and (17) are shown
in Figure 2. By putting values of B;, B and m; in
Equations (10) and (18), the horizontal stress due to
the shape of a model pillar specimen under ultimate
load (o) is estimated. ~When the axial stress
increases, the frictional stresses will increase and
development of frictional stresses to the body of a
pillar due to the width-to-height ratio results in a
very complicated distribution of horizontal stresses.
From this analysis, only the effective horizontal
stress under ultimate load is estimated.

The strength-shape relationship of a pillar is
comparable with the rock mass compressive
strength criterion. Among different failure criteria
for rock mass, the modified Bieniawski criterion by
Vutukuri and Hossaini (1992) is as follows:

B
) 1+Bm( o3 ) (19)
Ocm Ocm.
where o, is unconfined compressive strength of
rock mass; and
B,, is a coefficient of triaxial strength of rock
mass.
In the same way, using B_ instead of B; in Equation
(9), the horizontal stress in a pillar under ultimate
load is estimated as follows:

1
_ ®-1
o3 —ocm(iB—m—jﬁ (o)
1
=£c_(f(s)-1jﬁ @1
/®\ B,

The horizontal stress under any value of vertical
stress (o) lower than maximum vertical stress of a
pillar can be estimated using o, instead of o, as
follows:

1

f(e-1|8 29
03= f(s)[ J (22)

where o, is the average vertlcal stress and equal to
axial load divided by cross-sectional area of a
pillar.
o5 in Equations (22) is a function of width-to-height
ratio (f(s)) and o,, for a particular type of rock. As
an example, putting p=0.6 and B = 4 for coal
pillars in Equation (22), the relatlonshlps between
estimated horizontal stress and width-to-height ratio
under different vertical stresses from 0 MPa to 20
MPa are given in Figure 3. Figure 3 shows that
horizontal stress increases with an increase in both
the width-to-height ratio and the vertical stress
(depth). The width-to-height ratio and the vertical
stress play main role on the development of
horizontal stress.
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6. CONCLUSIONS
. . . 18
Increase of the compressive strength of a pillar with
an increase in the width-to-height ratio is related to < 16
the development of horizontal stresses, as axial g 14 ;
strength increases with an increase in the confining @ 7 "
pressure of specimens in triaxial tests. The £ 12 %
horizontal stress of a pillar is estimated by % 10 :
comparison between the strength-shape relationship |
. L. g 8 Vi
and the failure criterion of rock. g
The effective horizontal stress due to the width- = 6 A
to-height ratio of a pillar sandwiched between hard £ 4 4.d
roof and floor under ultimate load has been & 5
estimated. The horizontal stress of a pillar under o 2 o~
any value of vertical stress lower than maximum ol g™ :
vertical stress at yielding is also estimated. The two 0 1 2 3 4 5
factors of shape and verfical stress (depth) play a ' _ . .
main role on the estimated horizontal stress for a Width-to-height ratio
particular type of rock.
—O0—— Heokand —®—— Bieniawski
Brown criterion
criterion
Figure 2. Relationships between estimated
horizontal stress of model pillar specimens under
vielding and width-to-height using Bieniawski
criterion and Hoek and Brown criterion.
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Figure 3. Relationships between estimated horizontal stress and the width-to-height ratio of coal pillars having
B, =4 under average vertical stress from 0 MPa to 20 MPa.
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