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Summary A method of predicting transient moisture distributions in soils beneath covered areas has been
extended to examine the effects of a leaking water pipe adjacent to a concrete slab. The two dimensional unsatu-
rated flow behaviour is predicted using solutions to the fully linearised Richards equation. Laplace and Fourier
transforms are exploited to reduce the governing partial differential equation to an ordinary differential equation
which can be solved analytically for a horizontal soil layer. Solutions for a layered soil profile are possible using
a Finite Layer solution approach. The presence of a slab-on-ground is modelled by prescribing a zero flux segment
at the upper boundary. Climatic effects such as rainfall and evaporation events are modelled using Type 3 boundary
conditions, which regulate inflow and outflow as a linear function of the surface moisture content. The method
of applying a Type 3 boundary condition in a transform solution formulation is described briefly. The presence
of a leaking pipe adjacent to the edge of the slab is modelled by prescribing a source segment at a given depth.

An example is provided.
1. INTRODUCTION

This paper describes work carried out as part of an inte-
grated research project on reactive soils being under-
taken at the University of Newcastle. This project is in-
vestigating reactive soil phenomena associated with
lightly loaded residential structures. Its aims are to
gain a better understanding of moisture and volume
changes beneath covered areas on clay soil sites so that
the currently employed methods of prediction and de-
sign can be improved. There are several aspects to the
project including field trials, laboratory and field in-
vestigations and theoretical modelling.

The work presented here stems from the theoretical
component. It involves the development of a computer
program to predict unsaturated moisture distributions
in layered soil profiles beneath covered areas, such as
concrete building slabs. The long term aim is to verify
the program using field data obtained in other compo-
nents of the project, and then to couple the moisture
change predictions with volume change and soil-
foundation interaction models, to yield estimates of
foundation response.

Although the effects of partial saturation are not often
considered in everyday geotechnical practice, re-
search into partially saturated soils has been, and con-
tinues to be, widespread in fields ranging from soil me-
chanics to agriculture. Computer codes already exist
which use finite element techniques to solve the par-
tially saturated flow problem in 2 and 3 dimensions.
While the results of these codes are typically good,
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solutions in multiple dimensions are computationally
laborious, especially for long term analyses. As one of
the aims of this project is to improve the methods of
prediction and design used in everyday practice, it de-
sirable that the predictive code be fast and robust on
typical office computers. To this end, a code using a
new analytical approach is being developed. The prop-
erties of the Laplace and Fourier transforms are ex-
ploited to give stable and accurate solutions with a con-
siderable reduction in computational cost.

This paper outlines the solution of the 2-dimensional
moisture distribution problem, extended to consider
the effects of a moisture source at some depth adjacent
to the edge of a slab. It describes the application of a
Type 3 boundary condition to simulate the case of a
constant moisture content prescribed at the upper sur-
face of a layer. Typical solutions are also presented.

2. THEORETICAL APPROACH

Pullan (1990) presents a comprehensive overview of .
the substantial body of unsaturated flow theory which
has been developed to date. Only the major assump-
tions which are pertinent to the adopted form of the
governing equation, will be discussed here.

Moisture flow is generally described by Darcy’s law,
which can be expressed mathematically as

U=-KVP )
where U is the flow velocity vector, K is the hydraulic
conductivity, @ is the total potential and V is the gradi-

ent operator. In the case of unsaturated flow, the hy-
draulic conductivity, K, is a function of the moisture



content ¥, and the total potential has two components:
the gravitational potential, z, and moisture potential ¥
(also a function of the moisture content).

Darcy’s law (expressed in terms of a hydraulic conduc-
tivity function) can be combined with the total poten-
tial, and the principle of fluid flow continuity, to yield
(2). This is traditionally referred to as the Richards
equation.

% = V.(DV®)E @

In this instance, Richards equation is expressed in
terms of the soil diffusivity, D(9), as defined in equa-
tion (3).

D(®) = K(¥®) %% 3

To obtain a form of the Richards equation which can
be readily solved using transform methods, the follow-
ing assumptions and algebraic manipulations are ap-
plied.

@® Application of a Kirchhoff transformation in
which ¥ is transformed into a new variable 6 by means
of equation (4),

w !
6 = f K@) d¥ = j D®) dd (@)
P, 9,

in which 0 and ¥; =W(¥9) are arbitrary reference va--
lues.

®“Quasilinearisation” (Philip, 1968) which as-
sumes that the hydraulic conductivity function can be
adequately described by a function of the form

K « ¥ 5)

The exponent o is described by Philip (1968) as “a
measure of the relative importance of gravity and
capillarity for water movement”, and is unique for a
particular soil.

@® Full linearisation (Pullan,1990), assuming the dif-
fusivity function to have a single, constant value for all
moisture contents.

Considering flow in two dimensions only, Richards
equation may be thus be written in the form
p. 9% 3%6 30 96

xaz+Dza_zz—aDz-£=E (6)

The consequences of constrained diffusivity are sig-
nificant and are noted in Fityus and Smith (1994). The
advantage, however, is that the coefficients of the deri-
vatives are now constant, and analytical solutions via
the transform method can be found.

3. ANALYTICAL SOLUTION

Direct analytical solutions to the partial differential
equation (6) are generally not possible. It can be solved
numerically using finite element techniques.

Alternatively, mathematical transformations can be
applied to reduce equation (6), with partial derivatives

in the two spatial variables and the time variable, to an
ordinary differential equation in two transformed vari-
ables with derivatives with respect to the depth vari-
able only. These methods are similar to those applied
by Small et. al.(1989), in the solution of the consolida-
tion equation.

Partial derivatives with respect to time are eliminated
by the Laplace transformation (7), where 6 denotes the
transformed moisture variable.

0(z,x,5) = f e™.0(z,x,1) dt (7
0

Application of the derivative theorem (Doetsch, 1970)
associated with this transformation effectively re-
places partial derivatives with respect to ¢, with func-
tions of a new, complex variable, s. ’

In a similar way, partial derivatives with respect to the
horizontal coordinate, x, are eliminated using the
Fourier transform

O(z,&,5) = J e ¢50(z,x,5) dx ®)

-0
and its inverse

O(z,x,s) = ﬁf e$*.0(z,E,5) d& ©)

where @ denotes the Fourier transformed moisture va-
riable.

Application of the derivative theorem (Bracewell,
1986) associated with this transformation effectively
replaces partial derivatives with respect to x, with
functions of a new complex variable, & For problems
symmetric in x, & reduces to a real variable.

After successive transformations, equation (6) be-
comes

0,98 4p, 4@
It is possible to ﬁnd exact analytical solutions to equa-
tion (10) for a single layer, in terms of the transform va-
riables. Vertically non homogeneous soil profiles can
be handled by assembling single, homogeneous layer
solutions into a finite layer formulation, where the
boundary condition between layers maintains conti-
nuity of potential. )

- (8D, + 5@ = (10)

The transformed solutions generated must then be in-
verted to yield solutions at the required coordinates
and required times. Because of the complicated ana-
lytical form of the solution expressions, inversions for
each of the transformations are carried out numerical-
ly. Inversion of the Laplace Transform uses the method
of Talbot (1979). Inversion of the Fourier transform is
achieved either by the numerical evaluation of the in-
version integral in equation (9), using Gaussian quad-
rature. (Small et.al., 1988) or using Fast Fourier Trans-
form inversion routines. While the former method is
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has the advantage of being able to produce solutions at
uniquely specified locations, the latter method has
been found to be more convenient and efficient. This
is despite having to generate a large number of solu-
tions at regularly spaced points, which do not necessa-
rily coincide with the locations at which they are re-
quired.

4. BOUNDARY CONDITIONS

Accurate modelling of field problems requires realistic
simulation of boundary behaviour. The available nu-
merical techniques are somewhat limited when com-
pared to observed climatic phenomena. Two conveni-
ent and useful approximations involve the prescription
of either constant fluxes or constant moistures at the
bounding surfaces of the layer. These are sometimes
referred to as Type 1 and Type 2 boundary conditions,
respectively.

The applicability of the Type 1 and Type 2 boundary
conditions is discussed in Fityus and Smith (1995).
Also discussed is the inherent difficulty in the direct
application of the Type 2 condition with the transform
solution approach. The difficulty arises because the
transform method of solution accommodates the ap-
plication of only one type of boundary condition
across a layer surface. The only valid condition be-
neath a cover is that of a zero flux, and this cannot be
simultaneously applied with a constant moisture con-
tent prescribed for the uncovered areas. Fityus and
Smith (1995) suggested that a possible approach to
overcome this difficulty might involve the use of a
Type 3 boundary condition (also described as “linear”
by Carslaw & Jaeger, 1959). This is indeed the case and
its application is discussed in section 5.

S. THE TYPE 3 BOUNDARY CONDITION

The Type 3 boundary condition, (11), is actually a flux
boundary condition where the flux is continuously pro-
portional to the difference between the instantaneous
surface moisture content, ﬁTop(x, t), and some pre-
scribed limiting value, 0.

V(xv t) = h(x)' (ﬁTop(xv t) - ﬁa) (11)

Expressed in terms of a moisture change, 497,,, where
the change is the difference between the transient and
initial values(O7,p(x,2) and U7, respectively) we get

V(x,t) = h(x). @Opy(x,1) + O7, —8,) (12)

The function, A, may be prescribed to control both the
magnitude of the resulting flux and the rate at which
the limiting moisture value is approached. Special
cases exist for particular . values: % equal to zero re-
sults in the zero flux condition required beneath
covers; h very large causes instantaneous convergence
to the limiting moisture and thus approximates a Type
2 condition. (Note that, in (11), z will always be nega-
tive or zero)

Successful application of the Type 3 boundary condi-
tion requires that it hold at all points across the surface
of the layer, at all times. As the surface moistures vary
in both position and time, a special solution formula-
tion is required.

Taking the Laplace transform of (12) yields
Vix,s) = h(x). A0y, (x.5) + 07~ 0) (13)

where 46 again denotes the Kirchhoff and Laplace
h(x)
D,
Fourier transformation of (13) would require the ev-
aluation of convolution integrals, resulting from the
product of two spatially varying functions. This can be
avoided, however, using the superposition of partial
solutions to yield an accurate approximation to the full
solution. This is achieved by constraining the transient
surface moisture change to a spatially constant value,
and adopting a pulse function for A(x). In this way, (13)
describes a flux which is zero everywhere across the
layer surface, except for a discrete “segment” where it
is constant. A set of mutually exclusive segments are
defined to cover the entire surface.

transformed moisture variable and h(x) =

As A@Top is now constant, a Fourier Transformation
can now be applied to (13) without producing a con-
volution. Solutions at each surface node can be calcu-
lated for each applied flux segment. These can then
combined so as to simultaneously satisfy the Type 3
condition at a subset of nodes corresponding to the
centre of each segment. This approach is illustrated in
Figure 1. and described as follows:

e The surface boundary is divided up into a series
of spatially discrete regions (segments), with
the edge of the cover coinciding with the
boundary of a segment.(Figure 1.c.) Let the
number of segments be #; in this instance, n =
12.

e A flux of unit intensity is then applied to each
of the segments (i = I to n), in turn.(Figure 1.d.)
The application of each flux results in a change
in moisture, 46, at the central node of all of the
defined segments. Let the change beneath node
J» due the flux applied over segment i, be 46;.
At the central node, beneath the applied flux,
this change, A46;, is large; beneath remote seg-
ments, 48;; is relatively small.

e The segments of applied flux must then scaled
by multipliers A; (i = I to n) so that the mois-
ture changes at each central node, due to all of
the unit flux segments, satisfy the Type 3 condi-
tion. The Type 3 condition, formulated for each
of the segments, gives,

j=1

A= h(x).[i(A,Aa,)+ Oroi— e‘a], i=1,n (14)
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a) Typical covered area problem and Type 3 B.C.

b) Unknown Distribution of H(x). (schematic)
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d) Solutions at surface nodes due to each segment.

A7,
A840A10 A A

A A As a s

€) Multipliers determined to achieve simultaneous
Type 3 compliance at selected surface nodes.

f) Scaled segments to simulate the Type 3. B.C.

Figure 1. Schematic illustration of an approximated
Type 3 Boundary Condition.

The multipliers (Figure 1.e).) are given by the
simultaneous solution of equations (14). The
equations are rearranged in matrix form in (15).
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The solutions at all depths, determined for each
unit flux segment, are then scaled by their ap-
propriate multiplier (Figure 1.f).) and linearly
combined to yield an approximate solution.

Note that segments beneath the cover are
omitted from the procedure as their scaling fac-
tors must be zero to achieve the necessary Zero
flux condition in this region.

FORMULATION OF THE LEAKING
PIPE PROBLEM

6.

The transform solution formulation method can be ex-
tended to accommodate the presence of a leaking pipe
at any point in the soil layer. The pipe inflow may be
modelled either as a Type 1 or a Type 3 phenomenon.

The Type 1 approach is easily implemented by apply-
ing a constant inflow over a small area, at the required
depth. In the finite layer formulation, it appears as a
non zero term at an appropriate node (between defined
layers) in the prescribed flux vector. The value of the
term is given by the Laplace transformation of a pulse
function of finite width and appropriate intensity.

Special consideration must be given when a leaking
pipe is simulated in a profile with a Type 3 condition
specified at the surface. This is because the pipe is a
moisture source which can produce changes in mois-
ture at surface nodes, distinct from those due to the sur-
face inflows. The changes produced at the surface by
a Type 1 leaking pipe are independent of the changes
produced by the Type 3 surface condition. They can
therefore be considered separately. The formulation is
thus extended to firstly evaluate the Type 1 changes
and then satisfy the Type 3 condition at the surface to
include these effects. This involves the addition of a
moisture change term to each term in the left-hand vec-
tor in (15), equal to the change in moisture caused by
the pipe.

The implementation of a pipe leaking according to a
Type 3 condition is slightly more involved. In this case, '
the predicted change in moisture must consider the ex-
isting moisture content in the region of the pipe as well
as changes which occur due to inflows at the surface
and changes due to the pipe itself. For a Type 1 surface
condition, the effects at the pipe can be evaluated inde-
pendently. Once determined, the appropriate flux to
satisfy the Type 3 requirements at the pipe can be cal-
culated directly.

For Type 3 conditions at both the surface and the pipe,
the full solution must be determined simultaneously.
This can be achieved by treating the pipe in the same



way as each of the segments at the surface. The net ef- tion around a cover on a soil profile. The properties of
fect is to extend the vectors in (15) by one row and the the clay layer are those of the “Yolo light clay” de-

matrix by an extra row and column. This yields scribed by Moore (1939). The soil layer is 1 m. deep
T~ 1 e 1 R - and the cover is 6 m. wide. A leaking pipe is present at
0701~ 6 A 911-; -------- 46,, 46,, A, adepth of 0.5 m. and positioned 0.1 m. beyond the left-
0106, 7 7 A, hand edge of the cover. The boundary conditions are
§TO3_ q A, prescribed as follows.
. : 16) e The surface boundary condition is of Type 3
. 1 with the limiting moisture content, 9,, equal to
: A the saturated moisture content, 0.495. The val-
gTan_.ea A, ue of & is large (-10000), effectively causing the
g, g A surface moisture to reach saturation at the
Po™ap i instant the event begins, thereby simulating a
) ) ST Type 2 condition.
7. TYPICAL SOLUTIONS
e The base boundary condition is of Type 2 with
Figure 2. shows a typical set of solutions for infiltra- zero change in moisture content prescribed.

e saturated .

Figure 2. Typical solution of a covered area with a Type 3 boundary condition.
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e The condition at the pipe is of similar type to
that at the surface: a Type 3 with a large & to
simulate instantaneously maintained satura-
tion.

8. FUTURE DEVELOPMENTS

Work is already advanced on a modified formulation
which will enable a sequence of different boundary ev-
ents to be applied in succession. In this way, a climatic
record consisting of any number of infiltration and ev-
aporation events can be modelled. Further, the pipe can
begin to leak at any intermediate time, and different
combinations of surface and pipe boundary condition
types can be selected, according to the nature of the
event being modelled

9. DISCUSSION AND CONCLUSIONS

The transform solution approach to the unsaturated
soil moisture problem provides a fast and efficient al-
ternative to purely numerical methods. Spatial vari-
ations in boundary condition types are possible using
the Type 3 condition, in which the flux is set propor-
tional to the difference between the the instantaneous
moisture and some limiting value. This can be applied
as an approximation in which the condition is strictly
satisfied at a subset of surface nodes by the linear
superposition of boundary condition ‘segments’.

The accuracy of the approximation is influenced by the
number of segments into which the boundary is di-
vided. Preliminary indications are that 16 segments,
becoming narrower adjacent to the edge of the slab, are
sufficient to produce accurate solutions. If use is made
of symmetry in the formulation, this can be reduced to
8 pairs of segments.

The Type 3 formulation thus requires the evaluation of
a number of discrete, full solutions for boundary condi-
tions of restricted extent: one for each segment. In con-
trast, the Type 1 condition can be evaluated in a single
step, with the full width of the region treated as a single
segment. As a consequence, the Type 3 boundary
condition is significantly less efficient than the Type 1.
Despite this, both approaches are fast when compared
with time stepping numerical formulations. The speed
advantage increases with the length of the events being
modelled This is because both Type 1 and Type 3 trans-
form solutions require no iteration for a given set of
boundary conditions, regardless of how long they are
maintained.
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Valid, quantitative comparisons of efficiencies cannot
yet be made between transform and finite element
solutions. The relative efficiency of the transform
solution method cannot be accurately quantified until
a more generalised solution is achieved. This will in-
volve completion of the developments discussed in
section 8.
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