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Summary

A one-dimensional finite element analysis of a soil-pile-hammer system during pile driving is

presented. The pile hammer is modelled using the approach of Smith (1960). The pile is assumed to behave
elastically, and is discretised into a number of simple linear elements connected by nodes. The soil resistance acting
at each pile node is modelled by a spring and a dashpot, and the shear resistance of the soil is calculated using the
Mohr-Coulomb failure criterion. The resistance of the soil incorporates a non-linear exponential function to account
for rate effects associated with pile driving. The excess pore pressures generated along the shaft, resulting from
shear stresses and changes in total stress are computed. The results are compared with field measurements obtained
from a fully instrumented pile driven in a saturated overconsolidated clay. These comparisons show that the model

predicts the sets and stresses generated by driving well.

1. INTRODUCTION

Early pile driving analyses were empirically-based and
unreliable. The subsequent more soundly-based wave
equation method focussed on the transmission of
energy from the hammer to the pile.

Limited attempts have so far been made to analyse pile
driving by three-dimensional or axisymmetric finite
element calculations. However, these are very time
consuming and rather expensive, and are impractical
in many situations. This paper applies a simple one-
dimensional wave equation to pile driving, using a
standard finite element algorithm. The soil is assumed
to be elasto-plastic, with a limiting shear resistance
determined from the effective stress parameters at the
soil-pile interface, rather than the more usual
empirically-based criteria.

2. METHOD OF ANALYSIS

The pile is idealised as a number of linear elastic
elements connected by nodes. The soil resistances
along the embedded pile shaft and at the pile tip are
incorporated using the elasto-dynamic theory of
Novak et al. (1978). The hammer, cushion, and other
elements such as the capblock, are represented by a
series of weights and springs (Smith, 1960). The soil-
pile-hammer idealisation is shown on Figure 1. The
governing dynamic differential equation for a soil-
pile-hammer system is discretised over the entire
length of the pile and then assembled, using the
standard finite element method (Smith, 1988). The
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global equation of the soil-pile-hammer system in
matrix form can be solved numerically, using the time-
stepping Newmark-B method (Bathe and Wilson,
1976).

Actual Idealised
Soil it
Pile _
Pile £ element
4 i ii
Shaft
Internal 1 resistance
spring
i Tip
resistance

Figure 1. Idealisation of soil-pile-hammer system.
3. RATE EFFECTS

The well-known dependence of the resistance of soil
on the rate of loading is a non-linear phenomenon
which is frequently represented by a power law. Soil-
soil and soil-pile interface resistances generally
increase when the rate of shearing increases,
particularly for clayey soil. For sandy soil, this effect
is negligible.



In soil-pile systems, the soil at the interface, both
along the shaft and at the tip, is also subjected to time-
varying stresses.  This effect should also be
incorporated in a soil resistance model. For example,
Smith (1960) incorporated a representing viscous
resistance in his conventional wave equation analysis
of pile driving. A laboratory investigation by Litkouhi
and Poskitt (1980) of rate effects on the strength of
silty clays ranging from normally consolidated or
lightly overconsolidated to very stiff, revealed that
during the penetration of a model pile, the resistance
of the soil behaved according to the power law

Ry=R.(1+JVY) )
where Ry is the dynamic resistance, R, is the ultimate
static resistance, V is the penetration rate of the model
pile, J represents the rate effects and N accounts for
the non-linear behaviour.

Litkouhi and Poskitt (1980) proposed that the non-
linear damping of the clayey soil be considered in the
wave equation analysis. They also found that the pile
shaft damping values were greater than those of the
pile tip, contradicting Smith (1960). Coyle and
Gibson (1970) conducted triaxial impact tests to
determine the soil damping parameter for a sand and a
clay. They obtained values of 0.2 and 0.18 for the
sand and clay, respectively.

Guidance on values for J and N for the pile shaft and
tip, particularly in the absence of other data, was
presented by Lee et al. (1988) who compiled data
from a number of sources.

4. SOIL RESISTANCE

4.1 Elastic Resistance

It has been well established by the elasto-dynamic
analysis of driven piles that elastic waves generated at
the soil-pile interface propagate in the horizontal
direction (Novak, 1974). Under plane strain
conditions, and so long as the soil remains in the
elastic range, the shaft resistance to pile motion at
depth z, Py(z), is commonly expressed in terms of the
impedance functions

Py(z) = Gs.(Swi *+1.5w2).-W(2) (22)

Py2) = (k; + ko). w(z) (2b)
where G is the soil shear modulus; S,,; and S,,; are
functions of the dimensionless frequency a, = r,.0/V.,
in which r, is the pile radius, © is the circular
frequency of excitation, V; is the shear wave velocity
in the soil given by V(Gy/ps), ps is the soil density; i =
\-1; w(z) is the nodal displacement; k; represents the
soil stiffness; and k, represents an imaginary
component which accounts for energy dissipation in
the soil. Because damping generally increases with
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increasing frequency, and hence resembles viscous
damping, it can also be defined in terms of a constant
equivalent viscous damping. The force-displacement
equation then becomes

w(z)

P(z) =kw(z).+c. T 3)

where both k and c are real constants.

The variation of S,,; and S,,, with the dimensionless
frequency are illustrated on Figure 2 (Novak, 1974),
which shows that at higher dimensionless frequencies
the values of S,,; and S,»/a, do not vary significantly
and approach 2.75 and 27, respectively (Lee et al.,
1988). Substituting for o gives the soil resistance
along the pile shaft in the elastic range in terms of
frequency-independent parameters as

w(2)

P(2) = 2.75 Go.W(2) + 27.r, (Gs.ps). o

“
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Figure 2. Variation of S,,; and S,,, with dimensionless
frequency a, (after Novak, 1974).

The tip resistance of a close-ended pile is
approximated by that of a vertically vibrating rigid
disc on top of an elastic half-space, using Lysmer’s
analog (Lysmer and Richart, 1966)

Py, = (4 Garo.wp)/(1 - vg)

+ 341 V(Ge.p)-vol/(1 - V) ®)
where w;, and v, represent the tip displacement and
velocity, respectively. For open-ended piles, using the
soil stiffness at the pile tip based on the approximation
of Egorov (1965), and the radiation (geometric)
damping coefficient for a ring (Gazetas and Dobry,
1984), the soil tip resistance to pile motion in the
elastic range is

Py=(2 st.rng)/ [(1 - v9).Qn)]
+[34 (0 - )N Gypo)I(1 - vy) 6
where vy is the Poisson’s ratio for the soil, | =r; /r,, 1;
and r, are the inner and outer radii of the pile,
respectively, and Q is a constant dependent on 1.



4.2 Ultimate Resistance
Recent field tests carried out on fully instrumented
piles jacked into normally to highly overconsolidated
clays have shown that the ultimate shaft resistance is
controlled by the effective stresses in the soil. Lee et
al. (1988) considered that soil failure occurs only
when the soil spring force reaches its dynamic limit,
which has been determined from the static limit by
incorporating rate effects. Herein, the same criterion
is adopted. However, it is assumed that the ultimate
static resistance of the soil spring is reached when the
stress state satisfies the Mohr-Coulomb failure
criterion

Tr=c, + o, ’.tand N
where 1 is the ultimate static skin friction developed
along the interface, c¢,” is the effective adhesion
between the pile and the soil, o,’.tand is the effective
friction developed at the interface, o, is the effective
stress normal to the pile face, and & is the angle of
friction between the pile and the soil.

The adhesion is normally reduced to a low value by
the remoulding effects which accompany pile
installation and may be ignored. The values of ¢,” and
& are strongly dependent on the soil type, the surface
roughness of the pile, and the stress state in the soil.

The ultimate static resistance of the soil at the pile tip
is herein assumed to be given by the conventional
value of 9 c,, where c, is the undrained shear strength
of the soil.

Since a direct measurement of o, is impossible, it is
determined using the principle of effective stress.
Consequently, a knowledge of the total radial stress
and the pore pressure is essential.
4.3 Radial Stresses
The initial radial total stress (prior to a hammer blow)
may be expressed by
C; = M,.Cy ®)

where o, is the radial total stress and o, is the vertical
total stress, the two related by m,;. It can be shown
that the increment in the radial total stress due to the
plane strain expansion and contraction of the pile
cross-section (induced by the Poisson’s ratio effect)
during one hammer blow may be expressed by

Ac, =2 GevpAg, )
where v, is the Poisson’s ratio of the pile material, and
Ag, is the increment of axial strain developed in the
pile. Equation (9) is applied at each node. Due to the

very short duration of a hammer blow, it is reasonable
to assume that the degree of relaxation of the radial
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total stress along the shaft is negligible. Therefore; the
Poisson’s ratio of the pile material is the only
significant generator of radial total stresses, which in
turn generate €Xcess pore pressures.
4.4 Pore Pressures
In the pile driving model, the pore pressure u
immediately prior to the next hammer blow is
required. This may be calculated from
u=m,.u, 10)
where u, is the hydrostatic pore pressure, and m,
varies with the time elapsed since the previous
hammer blow and with the soil type. During the
analysis of a single hammer blow, undrained
conditions are assumed to prevail, due to the rapid rate
of loading. The total pore pressure at any depth and
time can be calculated by summing the initial value

and the increments of pore pressure generated within
the time interval.

Henkel (1960) proposed the expression for the excess

pore pressure in a soil element under undrained
conditions

AU=B Aoy + A" Atoy an

where for fully saturated soils B" = 1 (Bjerrum, 1969),

Ao,y is the change in octahedral stress, At is the

change in octahedral shear stress, and

A'=(BA-DA2 (12)

where A is Skempton’s pore pressure parameter

determined using triaxial test data. Negative values

for A" are expected for overconsolidated soil, which
dilates on shearing,

Using Equation (11), strain compatibility, and
equilibrium equations, it can be shown that the pore
pressure generated at a given depth and within a given
time interval following a hammer blow, Au, is given

by

Aug= A" N6/3 (Ac? + AtP) (13)

where A1, is the shear stress in the r, z-plane.
5. SUMMARY OF THE MODEL

In the pile driving model, the increments of radial total
stress and pore pressure at nodes along the pile shaft
are computed within each time interval and added to
the pre-existing radial total stresses and pore
pressures. The effective stress normal to the pile face
is then calculated, using the principle of effective
stress.  The ultimate static shaft resistance is
determined, and enhanced using the non-linear power
law describing rate effects (Equation (1)), to give the



ultimate dynamic shaft resistance. The ultimate static
resistance at the pile tip is evaluated using the
conventional expression of 9 ¢, and enhanced by the
corresponding rate effect coefficient to give the
ultimate dynamic tip resistance.

The dynamic forces calculated for the soil springs are
then compared with the ultimate dynamic forces. If
the calculated force in each spring does not exceed the
ultimate dynamic force, the soil behaviour remains
linear elastic. This implies that there is still sufficient
bond between the soil and the pile that elastic waves
can propagate across the soil-pile interface and greater
shear stresses can be induced into the soil, changing
the pore pressures. If the calculated force equals or
exceeds the ultimate force, the soil has reached the
plastic range. The soil-pile interface has reached
failure, and the propagation of elastic waves across the
soil-pile interface ceases. Further shear stresses
cannot be mobilised in the soil, and pore pressures no
longer vary.

In the numerical model, the change from linear-elastic
to plastic behaviour is implemented simply by
disconnecting the appropriate dashpots. The dashpots
are reconnected if the calculated dynamic spring force
drops below the ultimate dynamic force, and the
propagation of elastic shear waves resumes across the
soil-pile interface.

6. COMPARISON WITH FIELD TESTS

Rigden et al. (1979) and Dolwin et al. (1979) reported
comprehensive full-scale field tests performed on two
fully instrumented hollow steel piles embedded in an
overconsolidated clay. The tests were carried out at a
site at Cowden on the coast of Holderness, North of
Kingston-upon-Hull, which has been used extensively
by the Building Research Establishment as a test bed
for the evaluation of the properties of glacial till,
generally described as a stiff stony clay, and the
performance of site investigation equipment. At the
site there is a sequence of clay tills which were laid
down during a series of glacial advances.

The undrained shear strength of the site soil was
reported to be in the range from 110 to 150 kPa over
the upper 10 m. Oedometer tests revealed that the
overconsolidation ratio of the clay varies from about
50 at 2.5 m depth to about 4 at 9 m depth (Lehane and
Jardine, 1994). As the watertable was about 1 m
below the ground level; the soil is fully saturated and
the pile driving model is applicable. The shear
modulus of the clay was found to be in the range from
10 to 20 kPa, based on the results of a 865 mm
diameter plate bearing test (Marsland and Powell,
1985). The parameters adopted in the analysis are
presented in Appendix L

Figure 3 shows the details of the instrumented piles,
which are designated A and B. The two piles were
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identical except that pile A was open-ended, while pile
B had a 25 mm thick base plate. The 457 mm
diameter piles were driven to a depth of 9.144 m by
means of a BSP H.A. hammer with a ram mass of 3.5
t. The final height of the internal soil plug in the open-
ended pile A was about 40 % of the penetration depth.

Pile Details: —O Strain gauges
L=126m S O EP-Earth pressure
E;= 207,000 MPa PP-Pore pressure
pp=7.75 m’ o= =o——
Vvp=0.28 Accelerometer
Q(n)=0.5 mounting
1= 228.5 mm block
1;=209.5 mm ] o
Cable ducting |
©—f epmer —-@—r
———0— —® | .
e || £PEIPP g
) o —®
. § EPEPP H—@)
™ Omitted on pile A
Figure 3. Test piles and instrumentation (after Rigden
etal., 1979).

The pile instrumentation included strain gauge pairs,
and earth and pore pressure cells mounted in the pile
wall, flush with the outer face of the pile. Rigden et al.
(1979) reported that while the strain gauges generally
performed well, the data obtained during pile driving
from the earth pressure cells were of limited use due to
their slow response. Furthermore, several of the cells
appeared to have suffered from significant zero drift
during driving, even before they entered the ground.
The data obtained from the pore pressure cells
suggested that the majority of them retained some air.
Although the pressure cell data are not fully reliable,
they are adequate to provide general trends. For
example, the immediate response of the cells to pile
driving was a reduction in both the total earth pressure
and pore pressure. The immediate reduction in these
pressures may be attributed to the dilation which
occurs on loading overconsolidated clays.

Figure 4 shows the irrecoverable pile tip displacement
(set) for pile A, both measured and calculated using
the pile driving model. The measured and final
calculated sets for pile A are 7.6 mm/blow and 7.3
mm/blow, respectively. The longitudinal driving
stresses at full penetration calculated using the pile
driving model are compared with the measured values
on Figure 5. There is a large discrepancy between the
measured and calculated stresses at 6.287 m from the
tip of pile A. Dolwin et al. (1979) suggested that this
might be attributable to a poor weld between the



pressure cell flange and the pile at this location.
However, there is a generally good agreement between
the measured and calculated results.
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Figure 4. Comparison of measured and calculated sets
for pile A.

7. CONCLUSION

A one-dimensional, finite element pile driving model
has been presented. It incorporates soil failure
governed by effective stresses and the Mohr-Coulomb
strength criterion, rather than the more usual
empirically-based criteria. Elasto-dynamic theory has
been used to account for the loss of energy in the soil
due to radiation damping. Rate effects have been
incorporated using an empirically-based non-linear
power law, which deals with the rapid loading
imposed by pile driving.

The fundamental soil mechanics parameters involved
in the model are the soil shear modulus, the soil
density, Poisson’s ratio of the soil, and the rate effect
coefficients. ~ The soil-pile interface parameters
incorporated in the model are the drained adhesion
and the friction angle between the pile material and the
soil, which account for the limited bond at the
interface. The change in radial total stress and pore
pressure resulting from the expansion and contraction
of the pile cross-section are computed and used to
determine the normal effective stress acting on the
pile.

The model was used to calculate the set and driving
stresses induced in an instrumented pile embedded in
an saturated, overconsolidated clay till. Encouraging
agreement was obtained between the measured and
calculated results, verifying the pile driving model.

8. APPENDIX I - SOIL DATA FOR CASE
STUDY

8.1 Rate Effect Parameters

140 ¢ — Measured
704 ‘ " Calculated
0 %ﬁmmm 11.963
140+ &%

140 1
70+

o

6.287

Stress (MPa)
Distance from pile tip (m)

Time (ms)

Figure 5. Comparison of measured and calculated
driving stresses for pile A at full penetration.

Js = 1.03 s/m
N = 0.268

I o= 0.386 s/m
N = 0.404

=1

where s denotes the pile shaft and p denotes the pile
tip.

8.2 Soil Properties

Vs = 0.5
Ds = 1.8 t/m’®
G, = 16,000 kN/m?>
Cy = 115 kPa
A = 0.27
my = 1
8.3 Interface Parameters
C,’ = 5 kPa
= 20 deg
8.4 Hammer Details
Mass of Ram = 3.5t
Mass of Anvil = 053¢
Impact Velocity = 4.14 m/s



Cushion Stiffness
Restitution Coefficient

1,000,000 kN/m
0.9
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