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Summary

Pile group analysis has generally been limited to the situation where each pile in the group has

the same length, diameter and stiffness. In this paper the analysis of pile group response to lateral loading is
extended to consider the case in which the piles are not restricted to being identical. The existence of a critical
length of pile beyond which additional pile length is ineffective is evident in the results of the analysis. The
elementary case of two unequal piles is presented first and then an example of a nine pile group is investigated to
examine the possibility of varying the types of pile used at the centre, corners and sides to achieve a design aim.

1. INTRODUCTION

Elastic continuum based approaches to the analysis
of groups of piles allow for the interaction between
piles to be modelled. Although the effects of non-
linear soil behaviour and the shielding of piles within
a group are expected to alter the response, the elastic
analysis remains a sound basis from which to study

these phenomena. Poulos (1971a) presented a pile-

analysis based upon elastic interaction factors for the
influence of the loading of one pile upon the
deformation of an identical pile. Very little attention
has been paid to the problem of lateral loading of a
group of dissimilar piles.
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Figure 1. Definition of the two pile problem.

The elevation and plan of the general two pile
problem is shown in Figure 1. In general, piles 1 and
2 may have different values of bending stiffness, EL;
and EI,, length, L; and L,, and diameter, d; and d».
In common with most pile group analyses, the shear
and moment loading of the pile head is here
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restricted to being in one plane, and the interaction is
calculated for the deformations in planes parallel to
the plane of loading.

2. ANALYSIS

The analysis (PALLAS) follows the modified
boundary element method, in which the pile is
modelled by a finite difference approximation of the
equations of beam bending and the soil is modelled
as an elastic half-space, Poulos (1971a) and Hull
(1987). To model the soil, use is made of the closed
form solution for uniform horizontal loading of a
vertically oriented rectangular plate in an elastic
half-space, presented by Douglas and Davis (1964).
This solution is used for calculating the interaction
matrix for pile self-influence in the soil, while the
numerical integration of the equation of Mindlin
(1936) is carried out to determine the influence of an
element of one pile in the soil upon the elements of
all other piles in the soil. The two calculation
techniques were found to give the same answers for
pile self-influence factors, but both were employed,
since the use of the closed form solution is more
efficient than the numerical integration method for
assessing the matrix of pile self-influence factors.

A significant difference between this and most pile
group analyses, is the inclusion of the effect of all
piles in the soil-structure interaction matrix. The
bending of every pile and the interaction of every ’
pile and soil interface element with every other pile-
soil interface element is considered. This leads to a
large set of equations to be solved in order to model
the behaviour and interaction of all piles in a group.

Previous analyses have been restricted to groups of
identical piles, usually employing interaction factors
derived from the procedure of analysing just two
piles to predict the response of a pile group. This
approach tends to ignore the stiffening effect of the
presence of a large number of piles in the soil mass.



The results of the analysis for the behaviour of single
piles have been compared with the boundary element
based solutions of Poulos (1971b) and Banerjee and
Davies (1978), and the finite element based solutions
of Randolph (1981), Kuhlemeyer (1979) and the
results from the author’s own finite element
program, Hull (1987). By employing the average
displacement across the face of the soil element, the
results from the current boundary element analysis
agree much more closely with the results from the
finite element method than do previous boundary
element approaches, which employ the displacement
at the centre of the soil element. The group analysis
is also capable of incorporating a non-linear pile-soil
interface response, but this paper restricts attention
to the interaction in the elastic problem.

It has been shown that the results for the response of
a single pile can be presented more elegantly if use is
made of the existence of a critical pile length beyond
which any additional length of pile does not alter the
response of the pile-head to head loading. Randolph
(1981) has presented an expression for the critical
length £ of a pile in an elastic continuum. Based
upon the results of his finite element analyses of
single piles under lateral loading, and from the
consideration of dimensional analysis, his £ . can be
approximately represented by (1).
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This equation was originally cast in a form using the
soil shear modulus and Poisson’s ratio. Since the
effect of Poisson’s ratio is less than 3%, it has been
rearranged in terms of E., the Young’s modulus of
the soil at a depth equal to the critical length.
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Hull (1987) has also derived an equation for the pile
critical length from the closed form results from the
simpler Winkler (Subgrade Reaction) model of soil
response, Hetenyi (1948), the elastic continuum
based boundary element analysis used here and an
elastic finite element analysis.

@

The Winkler model results in a damped periodic
solution for the pile deformation pattern which has
been found to also apply to piles in an elastic
continuum. The wavelength of the Winkler solution
has been considered in the choice of (2) for the
critical length L.. Both equations are similar, but
since (2) has been developed from the analysis used
here, and only a set of equations for pile response for
use with (1) were developed by Randolph for similar
piles, (2) will be employed here.
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The critical length L. provides a suitable dimension
with which to non-dimensionalise the presentation of
results. Although the critical length equation applies
to any soil profile with a Young’s modulus that
varies linearly with depth, attention here will be
limited to the case of a uniform soil profile with
Young’s modulus Eg and Poisson’s ratio 0.5.

3. TWO PILE INTERACTION

The interaction effect between two piles has been
presented by Poulos (1971a) as o interaction factors
for the deflection and rotation of the head of an
unloaded pile due to shear and moment loading of a
second pile. The standard interaction factor is
defined to be the ratio of the head response of the
pile i, due to the loading of another pile j, to the
response of a single pile to the same load. The
response may be the head deflection, u or rotation, 6
and the loading may be a head shear force, H or
moment M. The standard interaction factors are oy,

oyum=0y (because from reciprocal theory the cross-
products of deflection due to moment, and rotation
due to shear are equal) and O\

However, when the two piles are unequal there is the
complication that, in general, the single pile response
is not the same for both of the piles. The reciprocal
theorem will still lead to the equality of the cross-
products of deformations and loads at two points in
an elastic system. However, when the response of
pile i due to loading on pile j is divided by the
response of a single pile of type i the reciprocal
theorem does not lead to equal interaction factors,

ie. OlymFOgH-

The interaction factors of Poulos are presented in
terms of the variation of the pile spacing to diameter
ratio (s/d), the relative stiffness of the pile to the soil
as measured by the value of Kr=EI/E,L* and the pile
length to diameter ratio (L/d). As well as these, the
inclination of a line joining the two pile centres to
the plane in which the lateral loading acts, the
departure angle B, affects the interaction factors.

From consideration of the symmetry of the problem
of a single pile, at any radius from the pile centre the
displacement of the soil in the direction of lateral
Ioading, u, will be given by an equation of the form
u=u,+u, cos2P 3)
where u, is the mean of, and u, is the difference
between the displacements occurring at B values of
90° and zero. The interaction factor variation with

departure angle would be expected to follow this
pattern too. '

For two piles with the same diameter and stiffness at
a spacing of three diameters, each with L/d=25 and



various values of L/d, Figure 2 presents Oyp, the
interaction factor for displacement u due to lateral
load H, defined here to be the deflection of the
unloaded pile divided by the deflection of the loaded
pile. In the figure oy has been calculated from
equation (3) (with 0,=(0l+0te)/2 and 0L,=(Cto-Olo0)/2
calculated from the values of interaction factor at
values of zero, ¢y and 90°, 0lg) plotted as a line and
the actual computed (numerical) values of
interaction factor at intermediate B values plotted as
symbols.
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Figure 2. Variation of interaction factor with
departure angle B.

The matching of the theoretical curve (based upon
the values of the computed interaction at two values
of B) to the numerical interaction factors computed
directly from the analysis suggests Equation 3 can be
used with any value of B. The interaction factor
from Poulos (1971a) for s/d=3 is also plotted in
Figure 2, again using Equation 3, and the results of
both analyses are seen to compare favourably for
L/d=25 for the full range of departure angles.

Figure 2 also presents the variation of the interaction

factor oy for a series of cases in which first the L/d
of the loaded pile is kept at 25 and the unloaded pile
takes on values of L/d 20, 15 and 10, then a series of
cases in which the L/d of the unloaded pile is kept at
25 and the loaded pile takes on values of L/d 20, 15
and 10. From the figure it can be seen that the
smallest length loaded pile produces a smaller value
of interaction factor than the case of equal pile
lengths, as might be expected. Whereas the smallest
length unloaded pile produces interaction factors
slightly above that for the case of equal pile lengths.
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It should be emphasised that the two-pile interaction
factors, such as those produced here, may still be
used to approximately calculate u; the deflection of
pile , due to N loaded piles. However, such a use
would be limited to piles having the same diameter
and relative pile to soil stiffness and would not fully
model the influence of the presence of all the other
piles. In regard to this, the standard pile self-
influence factor is actually only equal to unity for
pile spacings approaching infinity; since the
surrounding piles in a group stiffen the response of
any pile compared to an isolated single pile.

To account for a reasonable range of pile geometries
and placements, that are possible within a group of
unequal size piles, the extremely large number of
possible variations seems unlikely to be catered for
by a sensible set of two pile interaction factors. Also,
the fact that the pile self-influence factor is some-
what affected by the number and spacing of piles in
the group, leads to the conclusion that each pile
group is best assessed using the analysis directly.

4. NINE PILE GROUP STUDY

As an illustration of the results obtainable from the
analysis a nine pile group on a grid spacing of 3 pile
diameters will be considered. The aim was to obtain
the same shear load per pile in the group. A further
condition was that each pile has a pinned connection
to a rigid raft which results in the piles all deflecting
the same amount. The piles are of the same diameter
and stiffness. Each analysis required 3 minutes on a
486 /66 Mhz computer. By keeping the same pile
stiffness and diameter in a uniform soil, each pile has
a critical length of 25 pile diameters.
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Figure 3. Variation of pile head shear with pile
length in a nine pile pinned head group.

In Figure 3 the pile head shears developed as the
group undergoes a common displacement are plotted
when all pile lengths vary together from 5 to 40 pile
diameters. In the figure the “in line” piles refer to the
two mid-side piles in line with the applied horizontal



group load and “across line” piles are those two mid-
side piles disposed at a right angles to the loading.
From the figure it is clear that only a minor variation
with L/d is evident in the shear generated at the pile
heads once the L/d exceeds 25. This result is
consistent with the existence of the critical length for
lateral loading in pile groups, and suggests that for
flexible piles (L/d greater than L./d) the length of the
pile does not have an important effect upon the
group response.

Also evident in Figure 3 is the wide range of shear
forces developed in the nine pile group when it is
composed of one length of pile. In fact the central
pile carries 60 % less shear force than a mid-side
pile and the corner pile carries 60 % more than the
mid-side piles. Further the critical length concept
implies that the increasing of any pile length will not
alter the response appreciably. The shorter pile

length groups are essentially composed of rigid piles

and the shear loads developed are becoming more
uniform across the raft and the centre pile becomes
more effective.

Four cases of a nine pile group with the corner piles
kept at a constant length (L/d = 10, 15, 20 and 25)
and the remaining piles all changing together from 5
to 40 pile diameters are shown in Figure 4

It is evident that the closer the L/d of the corner pile
becomes to 25, the pile head shear force developed
with displacement reaches a limiting value which
does not appreciably increase with increasing the
length of the corner pile.
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Figure 4. Variation of pile head shear for corner
piles of constant length and other pile lengths
varying.

The developed shear force response of the corner
piles from Figure 3 (where all piles are of an equal
but varying length) is also reproduced in Figure 4 for
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the purpose of comparison. Above a length of 25
pile diameters on the x axis there is only a small
variation between the dashed curve, when all piles
are of equal length, and the uppermost curve, in
which the corner piles are always 25 diameters long.
The similarity between these two curves for L/d
greater than 25 is again due to the existence of a
critical length of pile appearing in the results of the
group analysis.

The two sets of curves in Figure 3 and Figure 4
suggest that the length of the corner piles must
reduce in order to attract less load. Further, it is
apparent that the length of the centre pile will need
to increase in order to attract more shear load.
However, it would be uneconomical to increase the
centre pile beyond the critical length, since there
would be no appreciable increase in head shear.

In view of the above it was decided to initially try
corner piles with lengths less than 10 pile diameters,
the centre pile with a length of 25 pile diameters and
both midside piles with lengths of 15 pile diameters.
The lengths of piles that resulted in all pile head
shear forces of the same magnitude were arrived at
after 4 trials.

The corner piles were found to have L/d ratios of
7.9, the “in line” midside piles 11.6, the “cross line”
midside piles 11.9 and the centre pile 25. Other
solutions would be possible for this problem but the
value of group shear load per unit of pile group
displacement will be maximised when the longest
pile is of the same length as the critical pile length.
For this arrangement the average non-
dimensionalised pile head shear load per unit of pile
group displacement (and obviously the actual pile
head loads) was 1.075. For comparison the same
average non-dimensional shear load for a group of
piles with all lengths equal to 25 pile diameters is
1.30. The exercise of sharing the load equally
among the piles has reduced the stiffness of the pile
group.

The average length of pile in the solution of the nine
pile group problem is 15 pile diameters, and the
stiffness of this pile group may be compared with
that of a group in which all piles are 15 pile
diameters long. The average non-dimensional shear
load for a group of piles with all lengths equal to 15
pile diameters is 1.16. The desirability of achieving
a uniform pile shear load distribution must be
weighed against a drop in group stiffness.

5. CONCLUSIONS

The response of an unloaded pile due to loading of a
neighbouring pile can be represented by Equation 3,
which is comprised of two factors that may be
described as the mean pile influence factor, o, and
the amplitude pile influence factor, o,. Equation (3)

v



defines the variation of interaction with respect to
variation of departure angle [3.

Reciprocal theory is satisfied by the deformations
and loads applied to piles of unequal size, but the
standard two-pile influence factors do not reflect the
theory. This means the two-pile interaction method
becomes unwieldy for groups of unequal sized piles.

The pile self influence factor has been found to vary
with the number of piles, and the spacing of the piles
in a group. Although two-pile influence factors can
model the influence of the loading of other piles in a
group, the influence arising because of the presence
of the other piles is not modelled. This has normally
been found to be of small effect, but can help to
explain why large groups of piles are often poorly
modelled by two-pile influence factor methods.

Because of the unsuitability of the standard two-pile
interaction method for pile groups with piles of
unequal size, and the existence of the other piles in
the soil mass, a full analysis is deemed preferrable in
the design of such pile groups.

Pile group response has been found to display the
effects that are consistent with the existence of a
critical length of pile. This feature can be used to
more efficiently design piles to resist working load
deformations by limiting the pile lengths to be a
maximum of L., provided axial load requirements
are met.

A problem in which the lengths of the piles in a nine
pile, pinned head group were each varied in order to
achieve the same shear force at each pile head has
been solved to illustrate a possible use for the group
analysis. The design aim was met at the cost of a
reduction in group stiffness when compared to a
group in which all piles were of the same length.

As new design requirements are raised by
increasingly more complex projects the analysis
method that is employed must be advanced to a state
where every possible advantage can be extracted
from the design.
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