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SUMMARY :
finite element analyses is presented.

A simple procedure for predicting slope stability using the nodal displacements determined from
It does not require a pre-assumed slip surface and all the
assumptions associated with limit equilibrium methods are eliminated.
both safety against shear failure and large deformation.

The safety factor obtained reflects
Application of the Nodal Displacement Method

(N.D.M), as illustrated by examples, shows that the method is a promising alternative approach to slope

stability problems.
1. TINTRODUCTION

Limit equilibrium methods have been widely accepted
for slope stability analysis because of the
simplicity the methods offer. However, for a slope
with complex, non-homogeneous and anisotropic
material where its physical and mechanical nature
changes with direction and time, limit equilibrium
methods could be unreliable and may not give a
convincing result. For instance, limit equilibrium
methods do not distinguish between built-up or
excavated slopes and would give the same critical
slip surface in both cases. Brown and King (1969)
have shown that the safety factor of an excavated
slope 1is slightly higher than in the case of a
built-up slope and the critical slip surface will
be different for both situations.

As a consequence of the ready access to more
powerful computers, efficient numerical models and
the increased questioning of the validity of the
limit equilibrium methods (Tavenas et al. (1980),
Pilot et al. (1982), Ching and Fredlund (1983),
Adikari and Cummins (1985)), the use of numerical
methods has become very attractive.

The application of the finite element metrhod to
analysis of stresses and displacements in slopes
has been well established and applied successfully
by many authors. However, the use of the method in
the evaluation of slope stability has not received
wide attention. This paper presents a simple and
rational method for the evaluation of slope
stability using the nodal displacements determined
from finite element analyses. The elasto-plastic
model using the Mohr-Coulomb failure criterion and
the Cambridge CRISP computer program (Gunn and
Britto, (1981)) are used for the stress—strain
calculation.

2. THE NODAL DISPLACEMENT METHOD. (N.D.M)

Donald et al. (1985) and, Tan and Donald (1985)
have shown how a nodal displacement analysis can be
used to determine the factor of safety, F, for a
system. In this method, separate finite element
analyses were performed, each with the strength
parameters, (c and tan ¢(= 1)), of all materials
incrementally modified by multiplying with a common
factor, the "strength modification factor, N". The
factor of safety can then be obtained in rterms of N
when the modified strength parameters are

associated with incipient failure. The
displacements of selected nodal points provide a

means of predicting this situation. The value of%q-

for which the displacements indicate a sharp
increase in the rate of deformation is taken as the
safety factor. Denoting the modified parameters by
an asterisk and the strength modification factor by
N, we have:

c* = c(N) (1)
o= u(N) (2)
Factor of safety, F = [I—N) when c* and * are

associated with incipient failure. Trial and error
is involved in the choice of the initial value of N
and the number and size of its increments. An
idealised plot of the nodal displacement curve is
shown in Figure 1.
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Fig. 1: Typical Nodal Displacement Curve.
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Fig. 2:

A simple homogeneous slope

First consider a homogeneous slope as shown in
Figure 2.
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A number of separate analyses each with ¢ and
reduced by a different value of the factor N as in
equations (1-2) are carried out. The nodal
displacement curve should, preferably, be plotted
for numerous nodes within the potential failure
zone. When the failure zone is not known, nodes
corresponding to the toe region should be used. 1In
this example, node #63 which is near the toe is
selected. The nodal displacement curve for this
node is shown in Figure 3. As seen in this figure,

the rate of increase in (LN) after the sharp bend

of the nodal displacement curve approaches an
almost steady state. There is no perfectly
delineated break-off point in the displacement

curve which can be used to define the critical

value of (lN)’ rather, the curve increases very

gradually without apparent limit. However, if we
adopt an alternate definition of the critical value

)
obtain (—lﬁ]

indicated by the dotted lines, we

1.06 .

as

Although this alternative

crit
definition of critical value is not necessarily the
true measure of the critical condition of the
problem, it is nevertheless a gocd indication of
the critical stage at which large deformation can
be expected for a very small decrease in the soil
parameters ¢ and u. The break—-off point represents
the beginning of rapid nodal displacement with a

small reduction of N, a situation of instability
with respect to ¢ and p which indicates the point
e s . . , _ql
of incipient failure. At this point, F = (ﬁ)crit.
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It was found that the sharpness of definition of F
is dependent upon the choice of constitutive model
for the soil, the node in the mesh for which the
curve is plotted, the type of element and mesh size
used in the finite element formulation, the size of
the increments in N and the method of plotting.
Figure &4 is the nodal displacement curve for
example 1 using the 15 noded triangular element
(Cubic Strain Triangle, CuST) of Sloan and Randolph

(1982). Comparing this curve with that of Figure 3
using the 6 noded triangular element (Linear
Strain, LST), the CuST element produces a well
defined critical value of (LNJ . However, the
alternative definition indicated by the dotted
lines in Figure 3 estimates the critical value
closely.

(lN)crit is a suitable choice for safety factor as

it accounts for both the slope failure (shear
failure) and safety against large deformation. The
definition of safety factor is essentially the same
as in limit equilibrium methods i.e. the factor by
which the available strength must be reduced to
just maintain the slope in equilibrium. Above
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the (ﬁ)crit large deformations would occur
for a slight reduction of
whereas below it, considerable
strength parameters is needed even for a

change in deformation.
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Fig. 4: Nodal Displacement Curve (CuST element)
. 1
Therefore, adoption of (N)crit as safety factor
would reflect the overall stability of the
system. The safety factor for this example with
regard to the overall stability is Fypy = 1.05
corresponding to (Tl\f)crit' ishop's simplified
method gives FBishop 1.00. Note that, in

contrast to traditional limit equilibrium methods,
no slip surface need be assumed for the N.D.M
approach, the critical failure surface effectively
being determined by the analysis. In addition,
most of the other important assumptions required
for the completion of limit equilibrium analyses
are eliminated.

Example 2, taken from Baker (1980) includes a thin
weak layer in the homogeneous simple slope as shown
in Figure 5.
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Fig. 5: Example 2.
The strength parameters (c and tan¢) for both

layers were incrementally multiplied by N.
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Typical nodal displacement behaviour is shown in
Figure 6 for nodes #18 and #19 located near the toe

region. The overall safety factor for this example
o (L =F =
s (Flopye = F = 1.34.

The displacement vector plots corresponding to {-1{\3)

of 1.25 and 1.34 are
significant nodal

before (11\‘:)

shown in Figure 7. No

displacements ocecur
erit” At (%)crit’ relatively large
nodal displacement is observed and there exists a
"discontinuity” between the displacement vectors
particularly along the weak layer boundary. This
is an indication of a possible location of a slip

7(b)).

excessive nodal displacements occur with a similar
failure pattern. Figure 8 shows the final
incremental displacement vector plot

for (1)= 1.34.

surface. Above

(Figure (LN}crit’

Here the "discontinuity" along the

weak layer is obvious.
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A comparison of results by various methods of
analysis is presented in Table 1. This shows that
the safety factor obtained by the N.D.M agrees well
with the most commonly used limit equilibrium
methods and also the finite element approach of
CRISS (Giam and Donald, 1988). The comparison in
Table 1 shows that simple limit equilibrium methods
are capable of calculating accurate safety factors
for this slope. Although these methods derive
their factor of safety from a particular value of
strength parameters only, the calculated F does
provide the correct value by which the strength
parameters must be reduced to bring the entire
slope to a state of limit equilibrium. It also
reveals that for such methods the definition of F,
taken as the ratio of available shear strength over
the mobilised shear stress does reflect the overall
safety of the slope against complete collapse,
although it does not provide any information on
likely deformations. The usual assumption is that
if F is sufficiently large, deformation will be
acceptably small. For problems where deformations
might be vital the N.D.M provides an alternative
formulation where deformation limits may be used as
a failure criterion in place of total collapse.

Table 1 also highlights that conventional methods
could over estimate the safety factor if the
correct critical failure surface is not used in the
analysis. Different optimisation schemes employed

yield their own value of safety factor
corresponding to their selected critical slip
surface. It is obvious that Bishop's method for a
circular slip surface is not efficient for this
problem.

Table 1: Comparison of factors of safety for example 2

Method of Analysis Fobtained
Wedge Analysis (Simplex Optimisation)t 1.33
Dynamic Programming (Baker) 1.29
Morgenstern-Price (Krahn & F redlund )} 1.38
Bishop’s Method (Simplex Optimisation) | 1.50
Sarma’s Method 1.39
CRISS 1.31
N.D.M (Nodal Displacement Method) 134 ]

*
*

¢ Limit Equilibrium analysis.
*

t

+

+

Finite Element analysis.
Ref: Donald (1987b)
Ref: Krahn & Fredlund ( 1977)

4. SENSITIVITY OF STRENGTH PARAMETERS.

Not all parameters are equally important in
providing strength for the system. A brief
investigation into the sensitivity of the analysis
to strength parameters (c , tan ¢) is given below.

Consider Example 1. If we reduce ¢ by 30% while
keeping tan ¢ at its original value, using Bishop's
method we obtain F = 0.94, On the other hand
reducing tan ¢ by 30% while keeping c at its
original value gives F = 0.76. The results are
summarised in Table 2.

From Table 2 we see that the stability of this
slope depends more on the coefficient of friction,
tan ¢, than cohesion, c. The nodal displacement
behaviour with the reduction of ¢ was observed for
a number of nodes (p kept constant) and typical

behaviour is shown in Figure 9. There is no
apparent “break-off" point. This indicates that
the overall stability of the slope is not very

On the other
in Figure 10

sensitive to to the reduction of c.
hand, the reduction of yp as shown



produces a "break-off" point.  The %)crit

1.09 which is slightly higher than 1.06 found in

Example 1 when both c and p were simultaneously

reduced. This shows that the strength compoment, u
is the controlling factor for the stability
analysis and therefore, for this slope effort

should be devoted to obtaining an accurate value of
4. TFor slopes with higher initial values of c this
will not necessarily always be so.

Table 2: Effects of Reducing ¢ or tan 4.

Actions c(kN/m?) | ¢(deg.) | F 1
Original values 3.0 20.0 |1.00%
Reduce ¢, 30% 2.1 20.0 0.94
Reduce tan ¢, 30% 3.0 14.29 | 0.76
Reduce ¢, 100% 0.0 20.0 10.73°
Reduce tan ¢, 100% 3.0 0.0 0.09%
Increase ¢, 30% 3.9 20.0 1.06
Increase tan ¢, 30% 3.0 25.32 | 1.24
Increase ¢, 100% 6.0 20.0 1.16
Increase tan ¢, 100% 3.0 36.05 | 1.80
Increase ¢, 200% 9.0 20.0 1.32
Increase tan ¢, 200% 3.0 47.52 | 2.64
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5. DISCUSSION

The above examples illustrate the use of the N.D.M
as an improved alternative approach to slope

stability analysis. Although the examples used in
this paper do not involve considerations of ground
water and pore water pressures there is no reason
why the approach cannot be extended to such
cases. Additional computing effort will certainly
be required, but for complex problems where stress
history influences could be important, conventional
1imit equilibrium analyses might prove inaccurate
and a complete stress—strain distribution of the
system is probably required anyway, justifying the
use of the N.D.M.

1t must be admitted that a considerable amount of
computer effort is required if elasto-plastic
analyses are to be performed for a sufficient

aumber of N values to delineate the (—lﬁ) nodal

displacement curve accurately. However, since we
are only particularly concerned with the initial
and ending portioms of the curve, a few separate
analyses might be enough to construct the two
tangent lines, particularly if the CuST element is

used. Two or three analyses below %)cr't and

another three or four analyses above

(ﬁ ]cri t

1
(’ﬁ )crit can be

approximated using F calculated by the simple limit
equilibrium methods. Many finite element
programmes are based on a small strain formulation
and yet the analyses are continued until large
deformations have been reached (e.g. Tan and
Donald, 1985). However, once the turn—over point
has been passed, which usually happens at
reasonably low strains, the errors are of little
consequence and for the examples presented in this
paper strains remain small throughout.

might be all that are required.

A sensitivity study by the N.D.M allows us to

decide which strength parameters will strongly
govern the stability of the system. This is useful
in laboratory and field investigations where

considerable effort can then be devoted to
obtaining accurate and representative value of the
controlling strength parameters.

6. CONCLUSION

The evaluation of safety factors in slope stability
analyses via stress—strain calculations is often a
more convincing and satisfactory approach than
using simpler conventional methods. This is
because limit equilibrium analyses use stresses on
the assumed failure surface which may bear little
relationship to the actual stress distribution on
that surface.

In limit equilibrium methods the safety factor
expresses safety against shear failure and not
against excessive deformations, which are assumed

not to occur provided that the value of F is
sufficiently high. In the N.D.M approach system
deformations are calculated, providing an

alternative acceptability criterion and the safety
factor against shear failure is determined without
the need to postulate a failure surface. Vector
plots of displacement or incremental displacement
indicate the likely position of the critical slip
surface quite clearly. Various assumptions of
limit equilibrium solutions, particularly regarding
constancy of F around the failure surface,
estimation of shear strength available at failure
and nature of side forces between slices are not
required in the N.D.M. The safety factor obtained
reflects the excess strength component the design
has against shear failure and excessive deformation
and the analysis may readily be used to highlight
significant material parameters.




The method currently requires significant computing
power, but with continued advances in cheaper
computing the N.D.M becomes an attractive
alternative to limit equilibrium methods and for
some problems may prove to be the only reliable
analysis.
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