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SUMMARY :

An effective and systematic search scheme is presented to determine both the minimal factor of

safety and the corresponding critical failure surface from a known stress distribution of the system. The
scheme starts at a region of overstress and the slip surface propagates towards the boundaries of the

slope.
satisfies all conditions of equilibrium.

1. INTRODUCTION

The determination of the critical slip surface is
of importance in slope stability analysis. It is

particularly wuseful for remedial work, slope
reinforcement, field instrumentation and
performance monitoring. In limit equilibrium

methods, a pre-assumed surface is mnecessary before
the factor of safety can be evaluated. There are
many methods currently available for slope
stability analysis which are capable of assigning a
safety factor to a given slip surface but do not
attempt to search for the critical ome. Often the
geological features will dictate the shape of the
slip surface but, when such information is mnot
available, automatic search routines should be
incorporated into the analysis to reduce the amount
of computation. For limit equilibrium methods,
many such techniques are available, notably -
simplex reflection (Nguyen, 1985), grid search
(Fredlund, 1981), Zigzag search (Wright, 1974),
Dynamic programming (Baker, 1980) and minimization
of multivariate function (Celestino and Duncan,
1981). All these methods seek to determine the
global minimum although the local minimum is often
unavoidable, particularly when the optimal surface
is a mulitmodal one.
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Fig. 1:

The Systematic Search

Research on failure patterns in-situ and in soil
elements has revealed that the location of the
critical slip surface is primarily governed by the
stress system in the soil (Janbu, 1973). This
paper presents an effective and systematic
procedure for obtaining the critical slip surface
when the stress distribution of the slope is
known. The minimum safety factor corresponding to

No arbitrary restrictions are placed on the

shape of the failure surface and the analysis

the critical slip surface is determined
simultaneously. No arbitrary restrictions are
placed on the slip surface and the analysis
satisfies all conditions of equilibrium. The

finite element method is frequently wused in
deriving the stress distribution of the system.

2. THE SEARCH SCHEME

Starting at point P, (Fig. 1) the failure surface
is propagated to the top and bottom of the slope.
Point P is selected to represent the zone of
maximum overstress. A useful way of doing this is
to consider the value of stress -level or fraction

of strength mobilized, (Kulhawy et al., 1969)
expressed in Eq. 1.
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Here, it 1is assumed that the effective minor

principal stress is the same at fallure, as for the
mobilised stress state. The reciprocal of Eq. 1 is
interpreted as being equal to the value of factor
of safety against local failure. Thus, a good
starting point P, would correspond to an area with
low safety factor against local failure. The
search commences by joining the adjacent stage
lines with segments incremented about 1° radially
as shown in Fig. 2. Starting with y° to B°, each
segment extends to meet the neighbouring stage
line. A typical segment is divided into six
intervals (five control points). The normal and
shear stresses, 0,;,T,; are calculated at these
points and hence the factor of safety of the
segment can be evaluated using Egs. (3-5).
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Fig. 2: Propagation of failure surface to the
right

The summations () indicate that both the shear
strength and the shear stress are summed over a
number of increments of length (Al) along the
segment.
. B fL(c' + c['l tan ¢')dL -
overall fL(T n)dL
where L = total length of failure surface.
The stresses, (g! and T, ) at the control

points are determin}gé, k}]}y interﬁ%’lating the stresses
at four closest integration points in the finite
element mesh. The failure surface will propogate
along the segment with the minimum factor of
safety. The process of selecting a segment and
calculating its safety factor is repeated until the
failure surface intercepts the boundaries of the

slope. The overall safety is then obtained from
Eq. 6. Several different starting points, P,
should be wused so that the global minimum is
obtained. In most cases, a few trials will be

sufficient to ensure this.

3. RESULTS

The stress distributions for the examples presented
here were calculated using an elasto-plastic model
and the Cambridge CRISP computer program (Gunn and
Britto, 1981).

Two cases analysed using the above search scheme
with program CRISS (Critical Slip Surface) are
presented here. A flow chart of CRISS computer
program is shown in Fig. 3. Example 1, (Fig. 4) is
a homogeneous slope with factor of safety close to
unity. This example is selected to simulate the
state of limiting equilibrium. The calculated F

obtained from accurate limit equilibrium methods
has absolute meaning only for F = 1. Values
greater than 1 can only be used to compare the

relative stability of two designs. The numerical
value is a function of the definition employed by
the method of analysis, rather than any aspect of
basic structural behaviour. For this homogeneous
imple slope, one would expect the critical slip
surface to be circular or near circular. Bishop's
implified method wusing the simplex reflection
optimisation (Nguven, 1985) gives FBishop 0.983

CRISS, Feriss 1.006. (The 3

decimal places are for comparison purposes and do
not necessarily reflect the wvalidity of the
analysis method.) It should be noted that both
approaches are totally independent in their
formulation. The latter is based on stress-strain
calculations and the former on static limit
equilibrium. Figure 5 compares the slip surface
found by CRISS with the potential slip 1line

as compared to
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directions. These slip 1lines are inclined at
bt dev . A .

i(z - 5 ) to the major principal compressive

stress. It can be seen that the failure surface is

tangential to these slip 1line directions which

confirms the location of the failure surface.
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Fig 3: Flow chart
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CRISS, F =1.006

Fig. 4: Critical Slip Surfaces
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Fig. 5 Slip Line Directions and the Critical Slip

Surface obtained by CRISS. (The relative
sizes of the crosses correspond to the
inverse of the local safety factor with
respects to shearing.)



The second example, Fig. 6, is taken from Baker
(1980). A thin weak layer is included in the
homogeneous simple slope. The slip surface will be
controlled by the presence of the thin weak zone.
A Wedge analysis (Donald, 1987b) which uses either
the Powell or Simplex optimisation algorithms
(Kuester and Mize, 1973) is carried out to confirm
both the location of slip surface and the
calculated factor of safety. Comparison with the
potential slip line directions is shown in
Fig. 7. Again, the critical slip surface traces
the path of slip lime directions. As might be
expected the slip surface passes through the
locations where the stress level is the highest. A
summary of the results by various methods of

analysis (limit equilibrium methods and finite
element analysis) is given in Table 1.
< kNfm®) | 6 (deg.) | v (kN/m?) | EGeN/m?) | v | Ko
Soil i1 2845 20.00 18.84 6.0E4 0.25 {0.65
Soil 12 0.00 10.00 18.84 2.0E3 0.25 | 0.65
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Fig. 6: Critical Slip Surfaces.
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Slip Line Directions with the Critical
Slip Surfaces.

Table 1: Comparison of factors of safety for example 2

Method of Analysis I Fobm;md
Wedge Analysis (Simplex Optimisation)® | 1.33
Dynamic Programming (Baker) 1.29
Morgenstern-Price (Krahn & Fredlund)® 1.38
Bishop’s Method (Simplex Optimisation) 1.50
Sarma’s Method 1.39
CRISS 1.31
N.D.M (Nodal Displacement Method)® 1.34
Limit Equilibrium analysis.
Finite Element analysis.
@ Ref: Donald (1987b)
O Ref: Krahn & Fredlund (1977)
® Ref: Donald & Giam (1988)
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Example 2 involves a slip surface of a non-constant
radius, hence any movement along such a surface
will cause distortion of the soil mass enclosed by
it. This distortion could occur only if the slip
surface were intersected by a family of shear
surfaces on which the factor of safety was constant
and equal to that for the slip surface (Spencer,
1981). This is observed in Fig. 7 and 9 where a
zone of distortion occurs around the sharp bend of
the slip surface. In these figures, the relative
sizes of the slip lines correspond to the inverse
of the local safety factor.

Fig. 8: Contours of Mobilized Strength. (Stress

Level).
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Distorted Zones to allow for kinematically
admissible slip

4, DISCUSSION

The above examples demonstrate the adequacy of the
search scheme for the critical failure surface in
slope stability analysis. It is capable of
predicting circular (Example 1) as well as
irregular failure surfaces (Example 2). For simple
slope problems, as in these examples, the critical
failure surface obtained by CRISS compares Very
well with those found Dby limit equilibrium
methods . With the advance of powerful numerical
methods and high speed computer technology,
modelling complex, non—homogeneous and anisotropic
material problems becomes possible. The stress
distribution of such complex problems can be
determined efficiently and the critical slip
surface can be obtained by this search scheme.

In comparison with the stress level and potential
slip line directionms, the search scheme produces
credible failure surfaces. Dynamic Programming or
Simplex Optimisation can also be wused for the
search scheme. However, these techniques involve
much more computational effort. During the CRISS
search, most of the time is spent in selecting the
four closest integration points for the calculation
of normal and shear stresses at the control
points. The Dynamic Programming or the Simplex
Optimisation would involve more segmentation and
thus require more computation effort than CRISS's
search scheme.




5. CONCLUSION

The determination of the critical failure surface
using the known stress distribution is the most
satisfying approach, as the location of the
critical failure surface is primarily governed by
the stress system in the soil. In this way, a
slope can be analysed for its critical slip surface
correctly and convineingly. The scheme presented
here has proved to be a systematic and efficient

approach and it involves no derivatives or
elaborate computation. Once the stress
distribution of a system is known, this search
scheme can be used and thus it can be applied in
conjunction with a wide ramge of numerical

methods. The approach is currently being extended
to imnclude slopes with pore water pressures.

6. REFERENCES
BAKER, R. (1980).
slip surface in slope stability computations.
J. Num. and Analyt. Methods in Geomech. ,
333-359.

Determination of the critical
Int.
IE,

CELESTINO, T.B. and DUNCAN, J.M. (1981). Simplified
search for Noncircular slip surfaces.

DONALD, I.B. (1980) . Methods of Stability
Analysis. Sem. on Slope Stability, Keynote
Presentation, Aust., Geomechanics Soc. - Viec.
Group.

FREDLUND, D.G. (1981). "SLOPE-II" computer
program. User's manual $-10. Geo-Slope Prog.

Ltd., Calgary, Canada.

GUNN, M.J. and BRITTO, A.M. {1981).
and programmer manual.

Uni., England.

JANBU, N. (1973). Slope stability computations,
in Embankment Dam Engineering. Casagrande V., Ed.
Hirschfeld and Poulos, John Wiley & Son, 47-86.

CRISP - User's
Dept. Civil Eng., Cambridge

KRAHN, J. and FREDLUND, D.G. (1977). Evaluation of

the University of Saskatchewan slope stability
program. R.T.A.C., Forum, 69-76.
KUESTER, J.C. and MIZE, J.H. (1973). Optimisation

Techniques with Fortran. McGraw Hill, 498 pp.

KULHAWY, F.H. DUNCAN, J.M. and SEED, H.B. (1969).
Finite element analysis of stresses and movements

Int. Conf. S.M. and F.E., Stockholm, V3, 391-394,

DONALD, TI.B. (1987a).
Plasticity Theory.

Assessment of Stability,
Soil Mech. Workshop, Uni.

Queensland.

DONALD,
Computer.

I.B. (1987b). Wedge Analysis on a Personal
Soil Mech. Workshop, Uni. Queensland.

DONALD, I.B. and GIAM, S.K. (1988). Application of
the Nodal Displacement Method to slope stability
analysis. S5th ANZ Conf. Geomech., Sydney.

in embankments during construction. Research
Proc. 10th Report No. TE 69~4, Uni. California, Berkely,

169 pp.

NGUYEN, V.U. (1985). Determination of critical

slope failure surface. A.S5.C.E., J. Geotech. Eng.

Div., V3, No. 2, 238-250.

SPENCER, E. (1981). Slip circles and critical
shear planes. A.8.C.E., J. Geotech. Eng. Div.,
GT 7, 929-942.

WRIGHT, S.G. (1974). SSTABl-A, General Computer
Program for slope stability analyses. Research

Report GE-74-1, Dept. Civil Eng., Uni. of Texas,

Austin.

464



