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Summary Mechanical dispersion is the term used to describe the spreading of a contaminant as it is transported
through a porous medium by advection. In the dispersion-advection equation, mechanical dispersion is taken into
account by treating it in a way that is analogous to molecular diffusion, so that the effective diffusion coefficient and
the mechanical dispersion coefficient are added together, the sum being referred to as the hydrodynamic dispersion
coefficient. Typically, the hydrodynamic dispersion is taken as a constant. In this paper it is shown that this maybe
misleading, particularly at an inlet boundary. A more accurate method is to vary the mechanical dispersion
spatially so that it is zero at the inlet boundary. The resulting difference can be very large (over 1000%) and cause
incorrect contaminant profiles, mass flow rates, and breakthrough times.

1. INTRODUCTION

There are three primary modes of contaminant
transport in a porous medium. These are advection,
mechanical dispersion, and molecular diffusion.
Mechanical dispersion is only present if advection is
present. The mathematical description of these three
processes is quite often taken for granted and for the
purposes of this paper it is worthwhile to consider
how they arise. See Bear (1972) for a detailed
description.

The mass flux of contaminant per unit time per unit
area, f, due to advection is given by

f = nvc €]

where n is the porosity of the medium, v is the pore
water velocity, and c is the concentration of the
contaminant. The velocity and concentration can be
expressed as a mean value plus fluctuations about the
mean. The resulting flux can be expressed as

f = n(c + c)(v + vy 2)

where v and c are the mean pore water velocity and
the mean concentration, respectively, and v and crare
the fluctuations from the mean. By taking the time
average of (2) and noting that given a long enough
time that the average fluctuations in velocity and
concentration will be zero, then (2) may be rewritten
as

f = ncv + nepv (3)

where ncv represents the average advective flux and
ncyv; represents the combined effects of the
fluctuations in velocity and concentration. In a porous
medium the fluctuations arise from the tortuous path
the fluid particles must travel and velocity changes
due to the presence of grains. This phenomena is

referred to as mechanical dispersion. In the absence of
any mechanical dispersion the mass flux due to
advection may be described as “plug flow”.

Experimental results for contaminant transport along
a column of porous media with a flux controlled inlet
boundary illustrate the analogy between mechanical
dispersion and diffusion, Figure 1. Mechanical
dispersion causes a spreading of the plug flow as time
increases, Figure 1la). The degree of spreading
increases with time. It is worthwhile to consider the
derivative of this contaminant profile, Figure 1b). Itis
evident by observation of the derivatives that
mechanical dispersion resembles diffusion of a point
source, Figure 1c). This is analogous to molecular
diffusion, Cussler (1984). This analogy leads to a
diffusive equation describing mechanical dispersion
(Bear, 1972), viz.,

- nD,, L& (4)

ncve = md 9z

where D4 is the coefficient of mechanical
dispersion. D4 is velocity dependent and for 1-D
transport is usually defined as D4 = av, where ais
called the dispersivity. It is found experimentally that
the dispersivity is scale dependent, o = a(L)
(Gelhar et al., 1985).

Equation (4) describes mechanical dispersion
adequately on a laboratory scale. However, in the
field (4) is less accurate since mechanical dispersion
is effected by macroscopic structures comprising the
medium’ (Pickens and Grisak, 1981; Sudicky et al.,
1983; Gelhar et al., 1985). On the laboratory scale
mechanical dispersion is dominated by the tortuous
paths caused by the grains in the porous medium.

Diffusive transport in a porous medium results from
concentration gradients. In an aqueous solution thisis
governed by Fick’s Law,
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Figure 1. Flow of contaminant in a column of
porous media with a flux controlled inlet bound-
ary showing the analogy between mechanical
dispersion and diffusion. a) Three concentration
profiles at three different times; b) The negative
of the derivative of the concentration profiles
shown in a); ¢) When the curves in b) are
centred, they are analogous to the solution of the
transient diffusion equation with a delta function
initial condition.

f=-D,5¢ 5)

where Dy is the coefficient of molecular diffusion. In
a porous medium the tortuous paths followed by the
contaminant particles modifies D,y The effective
coefficient of molecular diffusion is defined as
D, = tDy, where T is primarily a geometry
depended quantity called the tortuosity. The mass
flux due to diffusion is then given by
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d
f=—nD.g’ (6)

The total mass flux in a porous medium is obtained by
adding the contributions of advection, mechanical
dispersion, and diffusion, viz.,

= nvc — nD&
f = nvc—nD Fr @)

where D=D.+D,y=D.+av, is the
coefficient of hydrodynamic dispersion.

By considering conservation of contaminant mass in
a representative volume element and using (7), the
equation describing time-dependent contaminant
transport through a porous medium with constant
flow conditions is given by (ignoring chemical
reactions and decay),

o dc _ pic
Dozt = Vaz = Ry ()

where R is the retardation coefficient. (8) is referred
to as the dispersion-advection equation and is
commonly employed to describe contaminant
transport through a porous medium.

To solve the dispersion-advection equation
appropriate initial and boundary conditions are
required. The initial condition is ¢(z,0) = f(z); here
f(z) is taken to be zero. The boundary conditions are
more complicated. If the porous medium is bounded
by another porous medium then the concentrations
and normal components of the mass fluxes (given by
(7)) are matched across the boundary. Models that
consider a single porous medium can not apply these
boundary conditions and so the boundary conditions
need to be approximated in an appropriate manner.
The typical choices are Dirichlet boundary conditions
(constant  concentration), Neumann boundary
conditions  (constant gradient), or a linear
combination of the two leading to flux, finite mass,
etc. boundary conditions (Bear, 1972; Rowe et al.,
1995).

Even though mechanical dispersion is represented by
a diffusion equation it still arises from a different
physical mechanism. For instance, at the inlet
boundary it is not expected that mechanical
dispersion will draw mass across the boundary as is
the case for diffusion. Mechanical dispersion causes a
redistribution of contaminant mass. It does not bring
extra mass across the boundary. To stop this mass flow
across the boundary the dispersivity must be zero at
the inlet boundary. For this to occur the dispersivity
must vary smoothly with the spatial coordinate in
order to obtain a non zero value throughout the porous
medium.

In this paper the dispersivity is allowed to vary
spatially in the dispersion-advection equation.
Keeping the dispersivity zero at the inlet boundary
stops mass flow across the boundary due to
mechanical dispersion. The results are compared to
the standard and commonly used approach of using a
constant dispersivity.
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2. MATHEMATICAL MODEL

Consider a porous medium of length L. The boundary
at z = 0 is the inlet boundary and the boundary at
z = L is the outlet or exit boundary. As required by
continuity of fluid flow, in the absence of any fluid
sources or sinks, the pore water has a constant
velocity v from the inlet boundary to the outlet
boundary. Contaminant transport through such a
medium is governed by (8). Initially the medium is
free from contaminant, c(z,t) = 0. Dirichlet boundary
conditions are used, ¢(0,t) = ¢, and c(L,t) = 0.
Although  these  boundary  conditions  are
comparatively simple they are adequate for the
demonstrative purposes of this paper.

Given that the dispersivity varies spatially, a = a(z),
the contaminant mass flux, (7), becomes

f = nve — n(De + cx(z)v)%% 9)

By considering conservation of mass the following
dispersion-advection equation is obtained

¢ _ o 9%8c _ pac
D@5z v~ 5 = R (10)
where
D(z) = D, + a(z)v (11)

This is a more general form of the
dispersion-advection equation, (8).

A functional form for the dispersivity needs to be
selected in order to solve (10). To stop the flow of
mass across the inlet boundary due to mechanical
dispersion the dispersivity must be zero at the inlet
boundary, a(z=0) = 0. Numerical experiments have
shown that a can not vary too rapidly, particularly
near z=0. This is due to both numerical problems (the
concentration gradient at the inlet boundary depends
on the first few grid points) and the development ofan
unrealistically large negative velocity in (10) (due to
the gradient of the dispersivity in the advective term
of (10)). It is found that a gradually changing
dispersivity is most appropriate.

In natural soils it is known empirically that the
dispersivity is scale dependent, a = a(L), see Figure 2
(Gelhar et al., 1985). A contaminant particle moving
across the inlet boundary does not know the scale of
the porous medium it is entering. For example, if a
contaminant particle had travelled 100 m into a
porous medium it would behave as though it had a
dispersivity of around 100 m (Figure 2). However, a
contaminant particle that had travelled 1 m would
behave as though it had a dispersivity of 0.01 m
(Figure 2). This reinforces that the dispersivity should
be scale dependent. It may be postulated that the
contaminant particle behaves as though it is in a
porous medium of length z, where z is the
contaminant particle location. The dispersivity would
vary as in Figure 2, that is, instead of a = a(L) the
dispersivity varies as a = a(z), that is, Lis replaced by
z. The function form of o being,

a2) = & (12)

This gives a smooth variation of a with z (Rowe et al.,
1995). Note that Tompson and Gray (1986) have
modelled the dispersive flux as both spatially and
temporally varying, however, they derive this by the
use of volumetric averaging techniques.

For comparative reasons the solution of (10) using a
constant dispersivity will be called the Standard
Method. It is called the Standard Method because it is
the usual assumption made by numerical analysts.
The use of the spatially varying dispersivity, (12), in
(10) will be called the New Method. In order to
compare the two methods the dispersion-advection
equation, (10), will be non-dimensionalised.
Defining

| D

- Z — max
Z=1 T =30
P= B’: c-g (13)

where D = D, + a(L)v. For the Standard
Method (10), becomes

9°C_ paC _ aC
a2: ~ Y9z = T 14

which is the non-dimensional equivalent of (8). For
the New Method, (10) becomes

P_9°C _ pq _ 19%6C _ aC
oz T T Taez —ar ()
where
pz) = —Yk 16
@) = 5 a@y (16)

is a spatially varying Peclet number. Given this
definition the Peclet number in (13) is defined
equivalently as P = P(L). It is clearly evident that
the advective and diffusive terms in (15) vary
spatially. In non-dimensional form (12) becomes
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Figure 2. The longitudinal dispersivity as a
function of scale (Gelhar et al., 1985).
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oz) = LZ a7

The dispersivity is defined as an increasing function
of Z.Therefore, the coefficient of the diffusive term
in (15) is a minimum at Z=0 and increases to a
maximum at Z=1. The diffusive component (the
P/P(Z) term in (15)) decreases with L and v. Figure 3
shows the coefficient of the diffusive component asa
function of L for D¢=0.01 m?/a and v=0.05 m/a. It can
be seen that for small L the diffusive component is
close to unity, as in the Standard Method. As L
increases the_ diffusive component is significantly
reduced.

The_coefficient of the advective term can decrease
from a maximum of P to negative values as the value
of L increases. The relative magnitude of the
advective term compared with the Standard Method,
vize,

rrrrr -1 (18)

is governed solely by L and is shown in Figure 4. The
difference from the Standard Method is small for
small L, however, there is the unusual phenomena of
the advective term becoming negative when L > 50.
However, in this case P < 2 and as L increases, P
decreases and so the advective term is quite small. For
contaminant transport a negative Peclet number is
unusual and it may suggest the wrong choice of
dispersivity, ~(12), ~or it- -may- require more
understanding of the physical processes to interpret it
correctly in relation to mechanical dispersion.

and leaving the porous medium is compared. The
non-dimensional mass passing a given point Z up to
time T is given by,

T

M(Z,T) = f F(Z,7)dt (19)

O

where the non-dimensional mass fluxes, F, are

Standard

0.6 1

Diffusive component
o
w

0 0.2 0.4 0.6 0.8 1
Non dmensiont length

Figure 3. The coefficient of the diffusive compo-
nent plotted as a function of non-dimensional
length for the case De = 0.01m?%/a, v=0.05 m/a.

2-972

dc
F =Pc - 'é—z— (20)
for the Standard Method, and
r = pe L _9¢ (
r Pc P(Z) 9z \21)

for the New Method.

3. NUMERICAL METHOD

An explicit finite difference scheme is used to solve
the governing equations ((14) and (15)). Great care is
required when calculating the mass fluxes at the
boundaries. Numerically, the mass flux is calculated
as

M(Z,T) = > F(Z,jAT)AT (22)

i=1

where N is the number of time steps (c.f. (19)). The
mass flux, obtained from (20) or (21), requires a
knowledge of the concentration gradient. Initially, the
boundary condition ¢(0, T) = 1 represents a sharp
concentration front. For early time steps the value of
the concentration gradient is inaccurate and so the
calculation ~of the contaminant mass flux will be
inaccurate. This can be overcome by use of the
identity

1

M@n—Man=fq&m§ (23)

which is a statement of the conservation of
contaminant mass, viz., the mass entering the porous
medium minus the mass leaving must be equal to the
contaminant mass in the porous medium. For early
time steps the mass leaving the outlet boundary is
zero. When this reaches a predetermined minimum

equal to the area under the concentration profile

Standard
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Advective component/ P
o

Figure 4. The coefficient of the advective com-
ponent, (18), plotted as a function of non-di-
mensional length. The L=1 case is not shown as
it closely approximates the Standard case. The
Peclet number shown is the limit as the velocity
increases to infinity.
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(given by the right hand side of (23)). After this time
the concentration profile has smoothed at the inlet
boundary and (22) can then be used to calculate the
remaining mass to flow across the inlet boundary.

4. RESULTS

To compare the differences between the Standard and
New Methods, the ratio of the mass transported across
the inlet boundary is plotted as a function of velocity,
Figure 5. These plots are repeated for different
lengths of porous media. Although similar plots may
be obtained for the outlet boundary the data is less
accurate since the flow rates are quite often low.
However, it is found that the mass at the outlet
boundary follows similar trends to the mass at the
inlet boundary. Note that the time in Figure 5 is
non-dimensional. The velocity has been plotted in
place of the Peclet number as the Peclet number is
non-uniform due to the definition (16) and causes a
bunching of points at high velocities.

To put the differences between the two methods more
practically, consider a porous medium of length 10m,
Figure 5b). If the parameters are v=1 m/a, D, = 0.01
m?/a, and R=10, which gives P~10. For a
non-dimensional time of 0.01, that is, a real time of
100 years, the error in the computed mass entering the
boundary is around 70%. In this case the error is very
significant.

From the definition of D(Z), (11), it is evident that
changing the magnitude D, will only shift the curves
in Figure 5 along the horizontal axis, since D(Z) is a
linear function of v. So without loss generality, a value
of D, can be selected for all calculations. The results
for other choices of D, are the same, except that the
curves are translated along the horizontal axis. A
value of D.=0.01 m%/a was used forall plots in Figure
5. A typical range of values for D, is between 0.005
and 0.05 m?/a (Rowe et al., 1995).

Most evident in Figure 5 is the large overestimate of
mass across the inlet boundary for the L=100m case.
This can be understood by considering the definition
of D(Z), (11), and analysis of the concentration
profiles. Figure 6 shows a contaminant concentration
profile comparing the two methods for the particular
case L=100 m, v=1 m/a, D¢=0.01 m?/a, and T=0.1,
which gives P~1. As can be seen from Figure 6, the
two methods result in completely different solutions.
Given the above parameters the problem is dominated
by mechanical dispersion. For both methods, D, =
0.01 m%/a, however, Dpg = 100 m?/a for the Standard
Method. The large Dygq at the inlet boundary for the
Standard Method will cause a large amount of mass to
be drawn into the porous medium. This clearly does
not happen for the New Method as seen in Figure 6.

To explain the difference between the two methods
consider the mass that enters the porous medium. It is
apparent that the problem is dominated by
mechanical dispersion, the major component of mass
flux will be from advection. A total of
P*T=1*0.1=0.1 mass units (non-dimensional) will
enter the porous medium. By (23) this must be equal
to the area under the curve minus the mass out, which
for the New Method is approximately 0.1-0=0.1.
Thus (23) holds for the New Method. However, for

the Standard Method the mass flux entering was
calculated to be approximately 0.4, four times greater
than the mass that physically flowed across the
boundary due to advection! The extra mass is caused
by the mechanical dispersion term drawing mass
across the boundary down an apparent chemical
concentration gradient, this does not happen
physically. This example clearly illustrates the
problems associated with a constant dispersivity, that
1s, the Standard Method.

This method of comparing the contaminant mass
fluxes in advection dominated problems was used to
test various functional forms for the dispersivity. It
was found that correct mass flows were predicted
only when the dispersivity varied in a smooth and
gradual fashion, similar to the functional form given
by (12) and shown in Figure 3. Further work needs to
be done to identify the most realistic functional form
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Figure 5. Plots of the ratio between the Standard
Method and the New Method against velocity for
a) L=1m, b) L=10m, and ¢) L=100m. Note that the
time is non-dimensional, however, instead of plot-
ting the Peclet number the dimensional velocity
has been used since it gives a uniform scale as the
velocity increases (see (13)).
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for dispersivity. Although, for the demonstrative
purposes of this paper (12) is satisfactory.

At small velocities the Peclet number will become
small and be dominated by diffusion. Under these
conditions it would be expected that the two methods
would predict similar results. This is shown in Figure
5 at small velocities. In other words, the use of a
constant dispersivity is satisfactory for low velocities
and large molecular diffusion coefficients.

At high velocities the contaminant is quickly swept
away from the boundary, and so the concentration
gradient at the boundary will be zero, that is, it
becomes flux controlled. The only mass entering the
porous medium will be due to advection. However,
Figure 5 shows that the two methods are not
equivalent at high velocities, instead they converge to
a constant difference. This is because at small times
the concentration gradient at the inlet boundary will
be non-zero and the Standard Method will draw in
additional mass. Since the mass crossing the inlet
boundary is a cumulative total over time, the effect at
small times will be carried over to larger times. For
this reason it is not unexpected that there is a
difference between the two methods, even at high
velocities.

Given the arguments made for the behaviour at the
inlet boundary it could be suggested that a similar
situation will arise at the outlet boundary. The

5 Standard Method
S ] |NewMethod

0.4 0.6 0.8 1
Non<dmensional length

0 0.2

Figure 6. A comparison of the Standard Method
and the New Method for L=100 m, D=0.01 m?%a,
v=1 m/a, and T=0.1.
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influence of the mechanical dispersion on the outlet
boundary will be investigated in a future paper.

6. CONCLUSION

For a mechanical dispersion coefficient that varies
spatially, solutions of the dispersion-advection
equation deviate greatly compared to the standard
approach, which assumes a constant value for the
mechanical dispersion coefficient along the porous
medium. The difference between the two methods is
greatest for small times and long lengths of porous
media where the effects at the boundary are greatest.
The standard implementation of
dispersion-advection  equation  with  constant
mechanical dispersion is clearly inadequate under
certain conditions. The conditions where a significant
difference will be expected have been partially
clarified in this paper, Figure 5. The use of a constant
dispersivity is very conservative in many cases and
will greatly alter contaminant profiles and
breakthrough times estimated numerically.
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