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SUMMARY A method is presented for computing the time-settlement behaviour of circular rafts of Ffinmite
flexibility, resting on soil layers of finite depth. Results are presented for the time-settlement behaviour
of rafts on soil layers of various depths, as well as for the development of moment in the raft with time.

1. INTRODUCTION resting is a porous elastic medium which occupies
the region 0 € z € h and having a Young's modulus
Theoretical predictions of the rate of settlement Eg, Poisson's ratio vy, and permeability kg-

of foundations have undergone much development

since Terzaghi published his one dimensional con-~

solidation theory in 1925. Solutions were extend- G
ed to three-dimensional loadings applied to porous

elastic media (McNamee and Gibson (1960), Gibson

and McNamee (1963), Gibson et al (1970) and Booker g, }
(1974)) and work was done to determine the elastic !

t Er v
parameters required for such theories from EEEREEE IRE n I
laboratory testing.(Davis and Poulos (1963,1972)). i

However in all of the solutions previously ment- E. V. Kk h

t
ioned, it has been assumed that the loading appli- 1
ed to the soil was a uniformly distributed load, !
and no attempt was made to include the effects of
soil=-structure interaction. By including the
structure which i1s applying the loading to the i

\ 7
Rough rigid
or smooth rigid
soil, loadings quite different to the uniform load
case arise over the surface of contact between
structure and soil.

Fig. la Raft on Finite La
Investigators have previously obtained solutions & .
for raft foundations on an elastic soil (Borowicka
(1936), Habel (1937), Holmberg (1946), Brown (1969
a,b)) but these are useful only in predicting

short term (undrained) or long term (drained) beh- Two different boundary conditions were considered
aviour. They cannot be used to predict the period for the base z = h of the layer of soil; namely a
of time necessary for such raft foundations to rough-rigid impermeable base (i.e. vertical w and
develop their maximum deflections and moments, and radial u displacements are zero, and pore pressure
whether the maximum moments and differential def- gradient 3p/3z is zero) or a smooth rigid base
lections are exceeded during consolidation. (i.e. vertical displacement w and shear stress

drz are zero). The upper boundary of the soil
In this paper a method is presented for obtaining is assumed to be free to drain across the entire
the time-settlement behaviour of a circular raft surface (i.e. p =0 on z = 0).

of finite flexibility on a soil layer of finite
depth, where the soil is considered to be a homo-
geneous, linearly elastic, porous medium. The sol- ,
ution is obtained by calculating the response of qA(t)I

both the soil and the raft to a general reaction
distribution and then determining the precise form Raft
of the distribution by invoking displacement comp-

atability at the raft-soil interface.
g.(rt)

I
|

The raft—soil system 1is shown schematically in \F’ermeuble
Figure 1(a) where the circular raft of radius a

and thickness t, has a Young's modulus E_ and Soil

Poisson's ratio v The loading is assumed to | {Imper‘mzzuble

be a wuniform time dependent loading qu(t) va v
applied to the surface of the raft, although the :

theory is easily extended to accommodate other

loading distributions such as ring loads. It is

also assumed that the soil upon which the raft is Fig. 1b Soil-Raft System
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Figure 1(b) shows the raft and soil considered
separately. The unknown contact stress q.(r,t)
(which is a function of both radius and time) bet-
ween the raft and soil is unknown and must be det—
ermined. This may be done by assuming that the
contact stress may be represented in the form
suggested by Brown (1969b) i.e.:

N
q (r,t) =n§1Fn(t)¢n(r) (68}
Where Fu(t)
forces and

can be considered as generalized

6, = (- (r/a)H)" 0, 1, 2,..., N-1

n=

by = -G/t

2.1 Analysis of Raft
It may be shown, using the theory of Timoshenko
and Woinowsky-Krieger (19539), that the deflection

of a centrally supported circular raft subjected
to a ring load at radius ry 1s given by the

Green's function G(r,r;) where
Lo, . (1, e
an)=‘w4roﬂﬂm__)+% 5
4D, T (1+vy) a
rD L rs< a
2052
1 r (1—\)r)r ry
G(r,rg) = ___£r2(1+1n __E_) + 5 .
4D, r (1+v,) a
0<rgrg
(2)
D. = Ertr/12(1—vr2) 1s the flexural rigidity of
the raft.

In the case where a uniform loading qa(t) is
applied to the raft, the net load acting is
qalt) q.(r,t) and we may use (2) to calecul-
ate the deflection of the raft i.e.

a
wr,t) = wo(t)+ froc(r,ro)[cht)—qc<r,c>]dro
¢ (3)

where w(r,t) is the vertical deflection of the
raft at radius r and time t and wy(t) is the as
yet unknown central deflection of the raft.

It is now convenlent to introduce the quantities
ém(t) defined as:

a
§ () = [
0

r¢m(r)w(r,t)dr %)

These quantities arise from a consideration of the
virtual work performed by the reaction distribut-—
ion and are, to within a factor 2w, the generalis-—
ed deflections corresponding to the generalised
forces Fn(t). Compatability of the soil-raft
system may now be approximated by assuming that
the generalised deflections of the raft are equal
to those of the soil. The advantage of this
approach over previous methods, (Brown 1979b) is
that deflections do not have to be matched at
specified points along the raft-soil interface.
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If we combine (3) and (4) we obtain the
flexibility relationship:
N
§ ()= gm(e)+ vy (-] B F () (5
n=1
where
a
Em = fr@m(r)dr
0
a a
Ban = [ Irm0 &rredeg(ede () deg
a a
Yolt) = [ [rrg 6(r,rg)én(r) qalt) dr drg
0

=H, q,(8)

The coefficients Hy, are easily calculated by
evaluating the double integral in the above
expression. Values of Hy, are given by Booker
and Small (1983).

2.2 Analysis of Soil

Using the theory of McNamee and Gibson (1960) it
is shown in Appendix A that the deflection w of

the surface z = of an elastic layer of soil
subject to a loading gq.(r,t) on 1ts upper
surface 1s given by

= J
Vo= { ap(a,8) nzl F o (a)o(ar)da (6)

where the superior bar denotes a Laplace transfor-
mation, G 1s the shear modulus of the soil and
¢(a) is a function defined in Appendix A.

The term p{a,s) 1Is a function of the Hankel
transform parameter o and the Laplace transform
parameter s. The value of p(a,s) will depend on
whether the base of the layer is rough or smooth
and values are given for the two cases in Appendix
A.

From the definition cf_Gm(t) given in (4) we may

calculate the quantity Sm for the soil.

N :
Y FP
nep Bomo

€))

- o ap(a,s
Where P = f _EE‘:__E

mn

¢ (a) ¥y(a) da

26 n

o

2.3 TForce Balance Equation

We mst also consider vertical force equilibrium
for the raft. This leads to the force balance
equation

2r a

[ [ qalt) r dr ds -
0 0

2r a N
) F(t) ¢ (r) xrdrdd =0 (8)

0 0 n=1



which may be written:

N
7 £, F (t) = Pa(t)/2m

n=1

where Pp(t) 1is the total load applied to the
plate at any time and £, is as defined in (5).

3. ANALYSIS OF SOIL-RAFT SYSTEM

Equations (5),(7),(8) expressed in matrix form and
written in Laplace transform space become

[+ =EWU+Y -HF
$ = PF

- = P / 27 (&)
£EF A

The above equations may now be combined to give
the final set of equations for the soil-raft
system.

H + P -£ F i
- -~ - -~ (10)
" 0 =3 =B J2x
5 A

By solving (10) we may obtain the solution for the
Laplace transformation of the generalised forces F
and the central deflection of the raft wp. To
obtain the solution at any time t we must invert
the Laplace transformations, and this may be done
numerically using the numerical techniques of
Talbot (1979). The matrix P may also be evaluated
using numerical means such as Gaussian integration

(see (7)).

Once the generalised force coefficients Fp(t)
have been found, it is a simple matter to calcul-
ate moments and deflections in the raft using the

theory of Timoshenko and Woinowksky-Krieger
(1959).
4. EXAMPLES

As an illustration of the theory presented in the
previous section, the problem of a circular raft
on a consolidating layer of soil of finite depth
was considered. It was assumed that the raft had
a radius a and that the load q, 1s applied at
t = 0% and thereafter held constant. The layer of
s0il was chosen to be of depth h such that h/a = 1
and the Poisson's ratio of the soil was chosen to
be vg = 0 with that of the raft to be v, = 0.3.

Results are presented for two different boundary
conditions at the base of the layer; those in
Figure 2 for a rough-rigid base and those in
Figure 3 for a smooth rigid base (see section 2).
Plotted is the non-dimensional central deflection

(,w(O,t)/qA versus the time factor T where

T = ct/a® (11)
and ¢ is defined in Appendix A.

In each of the figures, results are presented for

various raft stiffnesses K = 0.1, 1.0, 10, where K
is defined as:

E
r

K = __ (1- vzs).(tr/a)3 (12)

E
s

(the quantities in this expression are defined in
section 2).
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Fig. 2 Time-Deflection Behaviour of Circular Raft
Rough Based Layer
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Fig. 3 Time-Deflection Behaviour of Circular Raft
Smooth Based Layer

In each of Figures 2 and 3 the same general trends
may be observed; that is the deflection of the
raft decreases with increasing stiffness but that
the rate at which consolidation proceeds is
approximately the same. For very flexible rafts
the time-deflection curves should be 1like those
for a uniformly distributed load. In each of the
Figures 2 and 3, the analytic solutions for a uni-
form loading have been plotted (Booker (1974)
rough base; Gibson et al (1970) smooth base). It
may be noticed that for a raft of stiffness K =
0.1, the deflection of the central point is init-
ially slightly less than for the uniform loading,
but becomes slightly larger at intermediate times
before once again becoming smaller at large times.-
This trend is evident for both rough and smooth
bases.

It is also possible to compute radial M, and
tangential Mg moment resultants (i.e. moment per
unit length) in the raft at any time during the
consolidation process. An example of this 1is
given in Figure 4(a). 1In this figure results are
presented for the radial moments in the raft at
various nondimensional times T. The particular



problem chosen was as shown in the inset to Figure
4(b) where the base of the layer was taken as
being perfectly rough and the layer depth such
that h/a = 0.5. Loading is a uniform load qp
applied at time t = 0" and thereafter held
constant. All other parameters chosen for the
problem are indicated on Figure 4(a).
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Fig. 4a Radial Moment Resultants
in Raft at Various Times
Fig. 4b 1Initial and Final Contact Stress

Distributions

At very small times (T = 10—5) it may be seen that
the central radial moment resultants are less than
those at greater radii. As time increases these
moments . reduce, but eventually begin to increase
again until reaching their final wvalues at
approximately Tt = 1.0. The central moment for
larger times is the maximum mowent in the raft,
which is not the case at small time values.

It is also of interest to note that the radial
moments in the raft computed at a large time T =
1.0 agree fairly closely with those presented by
Brown (1972) if the equivalent elastic parameters
(i.e. the drained parameters) are used to evaluate
the elastic solution.

Contact stresses q.(r,t) are shown plotted
agag.nst the radial distance for a very small (t =
10™°) and a large time (1 = 1). Substantial
changes occur in the contact stress distribution
as consolidation proceeds with these stresses
tending to decrease across the central portion of
the raft, and increase at the edge. As for the
moments, the contact stresses agree with the
solutions of Brown (1972) for large times if the
drained elastic parameters are used to evaluate
Brown's elastic solution.

The reason for decrease in moment occurring in the
plate as consolidation occurs 1s that the high
pore pressures which are initially generated at
the edge of the raft rapidly dissipate, causing
the edge of the raft to deflect more rapidly than
the central portion. This causes a reduction in
differential deflection im the raft; hence a de-
crease in moment. Differential deflections inc—
rease again at larger times and as a consequence
moments also increase.

Plots of radial moment resultant versus time and
differential deflection versus time are shown in
Figures 5 and 6 respectively. These plots demon-—
strate the 1initial decrease in radial moment M
and differential deflection A in the raft (A =
w(a,t) — w(0,t)). The particular plots presented
are for a problem similar to the previous ome
except that the raft is of flexibility K = 1.0 and
the soil has a Poisson's ratio of vy = 0.2.
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Fig. 6 Variation of Differential Deflection in
Raft With Time

Finally the effect of the layer depth on the rate
of consolidation of the raft was examined. The
problem chosen was a raft of stiffness K = 1.0
which is loaded by a uniform loading gqa applied

10?

at time t = 07 and thereafter held constant. The
base of the layer was chosen to be rtough and
rigid.
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Fig. 7 Degree of Consolidation for Scil Layers of
Different Thicknesses - Circular Raft

Results are presented in Figure 7 for various
layer depths h/a = 0.5, 1, 2, 5, =. Degree of

consolidation U is
in this figure where

plotted against time factor

w(0,t) - w(0,0)
= - 7 (13)
w(0,2) - w(0,0)

As would be expected the deeper layers do not
consolidate as rapidly as the more shallow layers.

In order to calculate actual deflections at the
centre of the raft, the initial and final wvalues
need to be inserted into (13). Values may be
calculated from the results presented by Brown
(1972), provided the correct initial and final
modulus and Poisson's ratio are used.



4. CONCLUSIONS

A method has been presented to enable the settle-
ments of circular rafts to be calculated at any
time during consolidation. Using the method,
differential deflections and moments in the raft
may also be computed at any time.

The theory and results presented have application
in the prediction of the rate of settlement of any
circular raft type foundation. For more complic—
ated or time dependent loadings or the inclusion
of more complicated structures (i.e. the walls of
tanks, silos etc.) the theory presented here may
be easily extended.

One application of the results may be to plate
load testing. It may be possible to backfigure
the value of ¢ (or cy)} for a layer of soil if
field data for the time-deflection curve of the
plate is known. This would involve fitting the
experimental curve to the theoretical curve in
much the same way as 1s done in the standard
"root”™ time and "log" time methods of obtaining
cy from the oedometer test.
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APPENDIX A

It may be shown by using the theory of McNamee and
Gibson (1960) that the surface displacement w(r,t)
of a layer of soil is given by the expression

w = pa,s) — (al)
h 2G
where the superior bar denotes a Laplace transform

and the subscript h denotes a Hankel transform
i.e.

;h = f ( f r w(r,t) Jg(ar) dr) e—st dt
0

0
The value Eh is derived from the loading applied
to the soil 1layer which in this case 1s the
contact stress qo(r,t).

Expressions for p(a,s) are given below:

I ROUGH BASE

pla,s) = -1/af(a) (A2)
ac
where Q(a) = (I; + I, f(a) —a (—) - 1)
ns
ac (az + 82) aTuSa o
and I, = __ Ty Tg- + ]- anT
ns B [ Csca a
ac uz aS
I, = ___[ s £ B ___9] = «ah
ns B 8 CB

- ol = BTy) + 1,7 +oh- Ta]

ns CB
fla) =
ac Cq
o - +1 +ahl -1
T\_S'(t? & ZTa uhcx



and Cﬂ = cosh(ah) Tﬁ = tanh{ah)
CB = cosh(Bh) T = tanh(Bh)
%1 = sinh(ah)
P =-v)
n = J—
(1 - ZVS)
11 SMOOTH BASE
p(a,s) -1/af (&) (A3)
where
e Tg h
Q@) = [ __(@-8 )+ +1 ]
ns To Sa Cq
In both the rough and smooth base cases the

expressions for large h (or equivalently large o)
tend to the same expression.

pla,s) = -1l/af(a) (A%4)
where 2(a) = (ae/ns)(a - 8) +1
which is the solution for the infinitely deep

layer of soil.
In the above expressions

(L-vg) k

c = 2G

L-2v,) v,

G is the shear modulus of the soil

v. 1s the Poisson's ratio of the soil

k?yw is the permeability of the soil per unit
weight of water

¢ is therefore indentical to the one dimensional
coefficient of consolidationm.

Because of the definition of q.(r,t) given in
Eq. 1 we may write

N
q =1 F o () (A3)
n=1
where
a
¢n(a) = { T ¢n(r) Jg(ar)dr

and evaluating this integral gives the expression

a?T(n + 1) J 41 (ca)

¢ (a) =
n 2(aa/2)"H
n=1, 2,3 ... =1
a?sin(aa)
$ (o) =
N (aa)
n=N=-%
Substituting for ah in Eq. Bl we obtain
_ p(a,s) N _
w = — ] Fo (a) (A6)
2G n=1 n

The application of an inverse Hankel transform

gives the required solution for the wvertical
displacement w. :
1 o ™
g [ ap(e,s) Zl F o (a)g(ar)de (A7)
0
The appropriate value of p(a,s) must be used

according to whether the base of the layer is
rough or smooth.
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