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SUMMARY When a heat source, such as a cannister of nuclear waste, 1s buried deep in a saturated soil the
soil undergoes an increase in temperature. The rise in temperature causes he pore water and soil .
skeleton to expand. The coefficient of expansion of the pore water is usually much greater than that of
the soil skeleton and so initially this differential volume increase leads to an increase in pore press-—
ure and a reduction in effective stress near the heat source. If the increase in temperature is too
great the effective stress may decrease to such an extent that cracking could occur. The excess pore
pressures generated by the temperature increase will however tend to dissipate because of the
consolidation process. Thus the increase inpore pressuremay not be as severe as Ffirst anticipated.

In this paper the distribution of temperature and pore pressure around spherical and cylindrical sources
is examined. The effect of consolidation of the surrounding soil significantly reduces the increase in
pore pressure due to temperature increases and thus reduces the risk of cracking.

1 INTRODUCTION do_ Jox + aoxy/ay + 30 ,/3z = 0 (typically) (1)
If a heat source such as a canister of radioactive where Oxx»Oyys+*+s0xy denote the increase in
waste is buried in a saturated soil the source total stress components over the initial equilibr-
will cause a temperature rise in the soil. This ium state (compressive stresses being reckoned
temperature rise will cause both the soil pore positive) and where changes to the density of
water and the soil skeleton to expend. In general soil, due to thermal expansion, have been
the volume increase of the pore water is greater neglected.
than that of the voids in the soil skeleton and so
the differential volume change leads to an inc- 2.1.2 Effective stress strain temperature relation
rease in pore water pressure and a consequent red-
uction in effective stress. If this reduction in The effective stress strain relations for an
effective stress is too great the soil may fract- isotropic thermo-elastic soil have the form:
ure, leading to an increased rate of migration of
pore water or even to a progressive failure, which € x +a's/3 = [O;X“ V'(U;y + U;Z)}/E'
ultimately reaches the surface. If the deposit is
sufficiently permeable consolidation will occur _

Y = o¢_ /G (2)
and the excess pore water pressure, generated by Xy

the increase in temperature, will dissipate and

. where E', v' are the drained values of Young's
reduce the severity of these effects. ’ &

modulus and Poisson's ratio, G = E'/2(1 + v') is
the shear modulus of the soil, 6 is the increase
in temperature (over an initial equilibrium state)
and a' is the coefficient of volume expansion of

In this paper an analytic solution is developed
for a spherical heat source buried deep in a satu-

ra?ed ;hermc-elastlF ?Ollé b Thf s?lutlgn, fi;. a the soil. Clearly if no structural changes occur
point heat source 1s toun v etting't e ra ;us during expansion a' will be identical to ag the
approach zero. The point source solution is then coefficient of volume expansion of the skeletal

integrated to obtain the solution for a

. . . material.
cylindrical canister.

The effective stress increases are given by

2 BASIC EQUATIONS relations of the type:

The equations for the one dimensional consolidat- ' =

. . . N g =0 -

ion of a two phase elastic soil were first devel=- XX XX P

oped by Terzaghi (1923). These equations were

generalised to include three dimensional effects where p is the excess pore water pressure.

by Biot (1941) and were subsequently generalised

to include the effects of anisotropy and visco- 2.1.3 Volume constraint equation

elasticity (Biot, 1956, 1962). Biot’s equations

can be modified to incorporate thermal effects as It is assumed that the skeleton is incompressible

follows: (to stress) and that the pore water is incompress—
ible (to pressure) then it 1is easy to establish

2.1 Development of Equations that:

The equations govern?ng Fhe consolidation of a v v = aav/at + a 38/t (3)

saturated thermoelastic soil are: ~ . u

2.1.1 The equations of equilibrium where a = as(l—n) + an

Three equations of the form:
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and ag, &, are the coefficients of expansion
of the skeletal material and pore water respect—
ively, v is the apparent velocity vector, n is the
porosity and €y is the volume strain.

2.1.4 Darcy's law

The flow of pore water in the soil is governed by
Darcy's Law:

v = -V p/y (4
~ ~ w
where k is the coefficient of permeability of the
soil and Y, is the unit weight of water.

2.1.5 Thermal energy balance

In many applications mechanical contributions to
energy balance may be neglected when compared to
thermal contributions. In such cases the net rate
of inflow of energy into an element of the

material will be just balanced by increases in the

internal energy of the pore water and the soil

skeleton. Thus, neglecting convective terms,
-V.h = mdo/dt (5
where m nyycy t (1-n)Ygcqg

and Yy, Yg are the densities of the pore water
and the skeletal material, ¢, ¢g are their
specific heats and h is the heat flux vector.

N

2.1.6 Fourier's law of heat conduction

The flow of heat in the soil is assumed to be
governed by Fourier's Law:

- K V8

~

h = (6)

where K is the coefficient of heat conduction.
3 SOLUTIONS FOR A SPHERICAL SOURCE

Consider a rigid impermeable heat source,

which has been placed at great depth below the
surface of a homogeneous, saturated, thermoelastic
soil. Clearly because of the great depth of
burial the problem exhibits spherical symmetry and
so the field quantities depend only on R, t.
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Fig 1 Temperate Isochrones for a Spherical Source

3.1 Temperature Distribution

Under conditions of radial
(5,6) may be combined to give:

symmetry Equations

<32 (R8)/3R% = 3 (RO)/3t (7
where ¥ = K/m.

For a constant heat source of strength Q, it may
be shown that this equation has the solution
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6 = 6yRo/R flkt/RZ, R/R,] (8)
where 9)
32+R/R
f = erfc(b) - e Oerfc(bta)
where AR = R-R,
a? = kt/R 02
b2 = AR? Jhkt
d? = «t/R?

and GN = Q/4HKR02 = final surface temperature.

The temperature distribution is shown in Fig. 1.
Where T = Kt/Ro is the dimensionless time.

3.2 Solution for a Completely Impermeable Soil

If the soil is relatively impermeable then the
excess pore pressures generated by the increase in
temperature will dissipate very slowly. It is
consequently of interest to examine the limiting
case of a completely impermeable soil (k = 0).

It is fairly simple to show that the pore pressure
is a simple multiple of the temperature, viz:

P o= X0 (10)
where X = (A 26)ay - (A+2G/3)a’
and A = 2Gv'/(1-2v")
Equations (1,2) may then be integrated to show
that the only non—zero displacement is:
w/Ro=a Qg/(4mKR) 1)
The only non zero stress components are
= 4 47K
%R auG Qg/(47KR)
o¢¢ = 2 auG Q(f-g)/ (4mKR) (12)
o = 2 a G Q(f-g)/(4mKR
- L& E8)/( )

the function f was defined by equation 9 and the
function g is defined by:

g = a2—(AR2/2R2—d2)erfc(b)+fR0AR/R2

.,bz
-ARde =~ /(RYT) (13)

Thus in this case all field quantities may be
expressed in terms of the two functions f, g.

3.3 Solution for a Permeable Soil

The functions f, g described in the previous sub-
section can be used to obtain expressions for the
field quantities in the case when the soil has a
finite permeability and it is found on integrating
equations (1-6) with the simplification of spheri-
cal symmetry that:

- 2
8 = Q/4TKR f(ct/R JR/R )
/4T KR
p = &l__U@u%{m%yﬂumjmmJ}
(1-c/x)
UR/R = aqu*/AﬂKR (14)
agr/G = 4a Qg*/47KR
¢ /G =0 = 2 a Q(f*-g*)/4nKR
¢ v u



where the functions f, g are defined by equations
(9, 13) respectively and

2 2

% = —

£ Y f(Kt/Ro ,R/Ro) Zf(ct/Ro ,R/Ro)

g* = Y g(xt/R °,R/R.) - Zg(ct/R *,R/R ) (15)
(o] o [e] o

with 2 = ¥/[a (1-c/k)(3+26)]

Y=z +0b"/[a (3+26)]

If the soil were impermeable, it follows from

equation lé4:

py = [(A+26)a -b'] Q/4mR = X8 (16)

This normalised pore pressure is independent of
the elastic properties of the soil depending only
upon position, time and the ratio of the coeffic-
ient of consolidation to the diffusivity, c/k.

The variation of normalised pore pressure with
time is shown in Fig. 2 for the values c/x = 1/3,
1, 3. The behaviour is as would be expected; at
first the rise in temperature causes a correspond—
ing rise in excess pore pressure, at the same time
the pore pressure starts to dissipate, and so the
rate of increase of pore pressure decreases with
time. After some time a maximum eXcess pore pres—
sure is achieved, and thereafter the rate of diss-
ipation of pore pressure exceeds the rate of gener-
ation due to temperature change and so ultimately
all the excess pore pressures dissipate. Fig. 2
shows that the consolidation process is

most effective in reducing the severity of the
rise of excess pore pressure. Thus if c/k = 3 the
excess pore pressure rises to less than eight per
cent of the value it would reach if no dissipation
occurred, if c¢/k = 1 the rise is a little under
fourteen percent while even if c¢/k = 1/3, the rise
is no more than twenty three percent.
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Fig 2b Variation of Pore Pressure With Time
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Equations 14 may be used to evaluate the stresses
and it is found that the increase in radial stress
is relatively small and compressive and its maxi-
mum value increases as the soil becomes more im~
permeable. Second, the increase in circumferential
stress is rather larger but it is also compress-—
ive. This means that the major reduction in
effective stress is likely to occur in the radial
direction.

3.4 Solution for a Point Source

In later applications we require the solution for
a point source of heat. This may be obtained from
equations (9,13) by allowing R, + O and we find
that f, g are now given by:

£ = £ = erfc(b)
pPs 2

= = 42 2 -b

= = +(1/2 - £ - % 7
g 8, d 1/ d®) s~ d° (17)
where b> = R®/hkt
4 APPROXIMATE SOLUTION FOR CYLINDRICAL SOURCE
The solution of the problem of a cylindrical
radiating source involves the solution of an

extremely difficult mixed boundary value problem.
A simple approximate solution may be obtained by
assuming that the c¢ylindrical source <can be
simulated by the integration of the point source
solution throughout the cylindrical volume, that
is, to consider the heat source to consist of soil
impregnated with a heat radiating substance.

To illustrate this approach we consider the case

of a cylinder length 2h and diameter 2r, as
shown in Fig. 3 for the particular case in which:
a'/a = 1/4, v' = 0.4, c/x = 2.

It is found that Oy = 1.45qr?,/K at the midpoint
on the surface of the cylinder. If the soil was
impermeable the pore pressure would reach a value
of py = XBy at this point.

o/ox

3 Variation of Temperature With Time for a
Cylindrical Source

variation of temperature and pore pressure on
plane z = 0 is shown in Figs. 3 and 4, while
variation of stress normalised with respect to
pore pressure py 1s shown in Figs. 5, 6 & 7.

Kt/ro2 is the dimensionless time.
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The cylinder is a relatively long one and so there
is 1little drainage in the vertical direction.
Thus, dissipation of pore pressure and heat diff-
usion proceeds more slowly than for the spherical
source. The effect of the increase in temperature
is to generate excess pore pressures but the cons-—
olidation process ensures that the excess pore
pressure only reaches a small fraction (approxim-
ately twelve percent) of the wvalue it would
achieve if no consolidation occurred. Changes in

” the direct stresses are again small and compress—
ive, the smallest being that in the radial stress
component.
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Fig 4 Variation of Pore Pressure With Time for a
Cylindrical Source (c/x=2)

5 CONCLUSIONS

A theory of the consolidation of soil for non iso-
thermal conditions which takes account of the
differential thermal expansion of the pore water
and soil skeleton and which is based on simple
concepts of volume constraint and the effective
stress principle has been developed.

This theory has been used to develop an analytic
solution for an impermeable rigid, spherical, heat
source and a point source surrounded by a thermo-
elastic permeable soil. Examination of the solut-
ion shows that the rise in temperature causes the
pore pressure to rise but that the excess pore
pressures generated in this way are dissipated
quickly and rise to only a small fraction of the
value that they would achieve if the soil were
completely impermeable. The stress changes around
the sphere are in general small and compressive,
the radial stress undergoing the smallest
increase.

An approximate solution to the problem of a cylin—
drical heat source has been found by integrating
the solution for a point source over the cylindri-
cal volume. Much the same conclusions can be
drawn for this case as for the sphere.
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