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SUMMARY : —
axial symmetry as derived by Rowe (1962) and Rowe,
(1964), and in any case in Wthh the effective

A general form of the stress-dilatancy equation is derived which applies to the special cases of
Barden and Lee (1964), plane strain as derived by Rowe
intermediate principal stress ¢, varies between the effec-

tive major principal stress o; and the effective minor principal stress o3 .

Experimental results showed that the effective stress ratio 6/0%

up to its maximum value was a linear

function of the dilatancy, the function being independent of the porosity of the material but dependent on

the ratio of two of the principal stresses.
relation between the maximum effective stress ratio,
postulated.

INTRODUCTION

A knowledge of the stress-strain relationship for
soils constitutes a fundamental step towards the
solution of engineering problems. Because of the
random and discrete nature of granular material, it
has been difficult to formulate theoretical stress-—
strain relationship which govern their behaviour and
thus elastic or plastic models have been generally
adopted in order to solve soil engineering problems.
In these two approaches the discrete nature of
granular materials is not considered; hence actual
stress-strain relations for soil are needed. Rowe
(1962) adopted an approach in which the discrete
nature of granular material was considered and the
stress-dilatancy equation was found to be given by:

5dV[V)

67/0% = (1 - s tan® (45 + ¢u/2) (1)
where:of = effective major principal stress,
¢, = effective minor principal stress,
dV/V = natural volumetric strain,
e, = natural major principal strain,
ou = true angle of friction between grains.

Tests were conducted by Rowe (1962) in the triaxial
compression apparatus and agreement with equation
(1) was found for the case of dense soils. 1In the
case of loose, normally consolidated soils, the
stress ratio G;/G; was found to be greater than
that given by equation (1), and thus to allow for
the excess energy absorbed, Rowe (1962) modified
equation (1) to:

P S 2
ol/07 = (1 = SNy e a5 4 o6 y2) (2)
Se,y b
where ¢ _= modified angle of interparticle friction

which fits the observation.

Tests conducted in the triaxial apparatus show good
agreement with equation (2) for dense, medium dense
and loose soils with ¢_=¢p , Lee (1966), Barden and
Khayatt (1966), and Khayatt and Wightman (1969).

For the case of plane strain, Rowe (1964), Rowe
(1969) and Barden et al (1969) found that for any
density there was good agreement with equation (2)
with ¢ = ¢én, the coulomb angle of shearing
resistance at the state of critical void ratio.
Rowe, Barden and Lee (1964) extended the work to
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The maximum dilatancy was found to be independent of 02, and a
the maximum dilatancy and the relative porosity was

cover the case of extension test where 0,=0,>0;, and
the stress dilatancy relation was found to be:

( 01/03)(1 — é%gf!) = tan® (45 + ¢f/2) (3)

where €; = the natural minor principal strain.

From extension tests, Barden and Khayatt (1966)
found good agreement with equation (3) for dense and
medium sand with ¢ _= 91, An extension of the
Stress-Dilatancy Equation for the general case where

x#a #03 is given in the Appendix.
EXPERIMENTAL INVESTIGATIONS

(1) Apparatus. Sutherland and Mesdary (1969) des-—
cribed an apparatus in which the principal stresses
can be varied in any desired manner. They also
showed that the sample deformed freely under the
applied stresses. A photograph of the apparatus is
given in Fig. (1), and in the apparatus, cubical
samples of 4-inch sides can be tested under three
different principal stresses.

Figure 1



Two materials were tested; namely,

(2) Materials.
The

Loch Aline sand and Glass Ballotini grade 12.
grading curves are shown in Fig. (2), and other
properties as shown in the table.

Loch Glass
Aline Ballotini
Specific gravity 2.65 2.94
Uniformity coefficient D;, /D, 1.30 1.50
(after Rowe 1962) 26°-26.30° 17.30°-18°

oy
Porosity 1imits* npay-Npin, 0.445-0.349 0.427-0.357

*After J. Kolbuszewski, 1948

(3) Sample Preparation and Test Procedures. Tests
were carried out in which samples were subjected to
a general stress path where o, was varied between
67 and o A detailed description of the test
procedure was given by Sutherland and Mesdary (1969)
for Loch Aline sand and a similar procedure was
followed for testing Glass Ballotini.
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Figure 2
PRESENTATION AND DISCUSSION OF RESULTS

Sutherland and Mesdary (1969) reported represent-
ative plots of c:/og and volumetric strain against
the axial natural strain in the vertical direction.
Results on Glass Ballotini showed a similar pattern
and there was a well defined peak behaviour at which
the rate of dilatancy was generally a maximum. The
strength of Glass Ballotini, as found for Loch Aline
sand, was higher in the case of of#cZ#cg than in the
case of axial symmetry.
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Figure 3
Figure 3 shows the relation between the maximum
dilatancy term (see Appendix) Dpgy or 1/Dpay and the
initial relative porosity n, for Loch Aline sand
where:

The values of D

) (4)

-~

np = (n - n)/(n )
r (nmax )/ ( nax min

correspond to, those tests con-

ducted with mean hormal stress On increasing where
the values of 1/Dpax correspond to those tests

conducted with ©
generally occured at the peak strength.

decreasing. The maximum dilatancy
As shown

one can conclude that the maximum dilatancy is

independent of 9:2

and the relation between the

dilatancy and the relative porosity may be given by:

= eanr, (5a)
fg%xo; increasing, (o;=0:>o;:0;20;:0;)
or 1/D = eanr, (5b)
for o decreasing, (0;=0;20;=0;>0;:0;)
where a = 0.68 and e = 2.71828..,
therefore Dmax = V-88n, (5¢)
or l/DmaX = eO.GSnr (5d)
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Fig. 4
Fig. 4 shows the results of Cornforth (1964)
conducted on Brasted sand under plane strain and
axial symmetry, whether extension or compression.
Fig. 5 shows the results reported by Barden (1969)
and Barden et al (1969) on Welland sand, also under
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Fig. 5
plane strain and axial symmetrical conditions. The
results shown in Figs. 4 and 5 are those given by
the previous authors, but after being prepared in
the form of Fig. 3.

The results in Figs. 4 and 5 show good agreement
with equations (5c¢) and (5d) and support the finding
that the maximum dilatancy is independent Ofgg for
the same mean normal stress.

Fig. 6 shows the relation between D, (or 1/D )
and n_ for Glass Ballotini. The results show A1850
that Dpax (or 1/Dpax) is independent of o7, though a
different relation than that given by equations (5c¢)
and (5d) is found. The relations are linear:

D increasing, (6a)

max

n,. + 1.10, 05

and 1/Dpax = np +1.10, 0y decreasing. (6b)



The difference in form between equations (5a) and
(5b) and equations {6a) and (6b) may be attributed
to the difference in the shape of particle contacts
for sand and glass balls.
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STRESS-DILATANCY RELATIONSHIPS

Equations Al2 and A12' (see Appendix) were derived
for the condition of minimum energy. The results
were plotted in the form q’/c; against D for tests
with o increasing and against 1/D for tests with
Gé decreasing. Some typical plots are shown in
Figs. 7 to 9 for Loch Aline sand. Similar results
were found for Glass Ballotini.
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The plots indicated a linear relationship between
67/6; and D (or 1/D) up to the peak stress ratio.
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Then /el =06"/0" =
01/} Oz/oX (D)Rpf, (7a)

’

where ¢ >¢ >0”
zZ yTX
and 6i/0; = 0;/6; = (1/D)Rp'f, (7b)
where ¢ <¢ <o .
z xSy

The values of Rp_ and R'p, are plotted against the
porosity n, as sgown in Fig. 10 (for Loch Aline
sand), and Fig. 11 (for Glass Ballotini), along with
values of Kp and Kpcv where Kp = tan’ (45+¢ /2).
The ¢, values were obtained from tests at largg
strains in the conventional triaxial apparatus
following the procedure given by Sutherland and
Mesdary (1969), and were found to be 31°30' for Loch
Aline sand, and 23° for the Glass Ballotini.
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Figs. 10 and 11 show that the values of Rppand R'pf
are practically constant for each of the eleven test
series, irrespective of the porosity of the samples
over the range of porosities tested.

From equations (7a) and (7b) and equations (5c) and
(5d), then at the maximum dilatancy for Loch Aline,
Brasted, and Welland sands (which generally occurred
at the peak strength):

(c1/03) = Rpf9‘68nr, where oz>0y20%, (8a)



and ( oi/03 ) = rp_ e+ 880y

£ (8b)

o e s e s s
where o =0,20 =0,>0 =05,
N X z

and from equation (7a) and (7b), equations (6a) and

(6b), then for Glass Ballotini:

(07/03) = (n + 1.10) Rpf? (9a)
where 6’=07>7"=0%20 =03,

z y X
and (07/67) = (nr + 1.10) R'pp (9b)
where o’=o:;%:=oz>2;=c;-

The results obtained can be further considered for
the cases of axial symmetry and non-symmetry.

(a) Axial Symmetry. For this case, the values of Rpf
and R'p. were found to be close to the Kpu value,
indicating that the energy absorbed was a minimum
and that sliding occurred in preferred directions
close to the critical B directions. These results
found from tests on cubical samples, agree with the
findings of previous investigators. Using a Kpf
value, which for axial symmetry should correspond to
Rpy, Rowe (1962), Lee (1966) and Barden and Khayatt
(1966), found that Rpf (Kp.) was equal to Kp, for
dense and medium dense soils. Barden et al (1969),
have subsequently reported that Rpg (Kpf) was equal
to Kp, for sands tested at different porosities
ranging from dense to loose states using cylindrical
samples in the triaxial apparatus. For the minimum
energy criterion to be followed, samples should have
freedom to permit sliding on preferred directions
corresponding to the critical g directions. It
could be argued that loose samples will have more
freedom than dense samples, because of the lesser
possibility of particle interlocking. However, the
test results indicate that this possibility appears
to be of little significance over the wide range of
porosities investigated. For very loose materials,
erratic particle movements can occur in non-
preferred directions because of the instability of
the packing and the energy absorbed will then be
higher than that of the minimum energy criterion,
e.g. Rowe (1962) found ppto be equal to g¢cywith very
loose soils. However, on reloading the samples,
Rowe found that the minimum energy criterion was
observed with ¢,.= ¢, 6. Also, Horne (1965) has
pointed out that for a very dense material with a
high degree of interlocking, the energy absorbed
would be greater than that required by the minimum
energy criterion, due to the restriction imposed on
the particle movements by the high interlocking.
Neither extremely loose nor extremely dense
materials were used in the present investigation,
and within the ranges studied it was found that for
the case of axial symmetry the minimum energy
criterion was followed.

(b) Non-Symmetry. For this case the values of Rpf
and R'p were greater than the Kp, value. The
energy absorbed was greater than that given by the
minimum energy criterion and this shows that sliding
occurred on non-preferred directions as discussed
by Sutherland and Mesdary (1969). Since the Rp
and R'p values were found to be independent of
porosity, it would appear that the restriction on
particle movements is due to the applied stress
- system. For the special case of plane strain, Rowe
(1964), Rowe (1969) and Barden et al (1969) found
that Rp (Kpf) equalled Kpgy. The Kp values for
the Loch Aline sand and the Glass Ballotini have
been plotted on Figs. 10 and 11 respectively. From
the detailed records of the tests, the Rp ¢ values
corresponding to the plane strain condition can be
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estimated, and these are shown on Figs. 10 and 11.
They correspond to the Kp oy, values, and are in
agreement with the results of the previous
investigators.

It is interesting to note that tests conducted by
Cole (1967) using the Cambridge Mk.6 S.S.A., in
which the sample deformed in simple shear under
plane strain conditions showed that Rpg (Kpf) is
constant for dense and loose sands. Also Rowe
(1969) has reported that Proctor (1967) found
agreement with equ. (7a&b) for the cases of axial
symmetry and plane strain using the hollow cylinder
test, with Rpfz Kp“ and Rpg= Kpcvrespectively.

CONCLUSIONS

1. The maximum dilatancy (Dmax or 1/Dmax) is found
to be independent of o¢,. At the maximum dilatancy
which generally occured at the peak strength, the
stress ratio can be related to the initial relative

porosity.

2. The energy absorbed in deforming a sample up to
the peak stress ratio was found to be greater for
the case of non-symmetry than for axial symmetry.

3. The stress ratio o¢j/c; up to its maximum value
was found to be a linear function of the dilatancy
term D or (1/D). The slopes of the lines Rp_. and
R'p,. were found to be independent of the porosity of
the material and appear to be a function of c;/c;.
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APPENDIX

Consider any two particles in contact, taken from an
assembly of particles as shown in Fig. (A41). The
axes oz, 0oy, and ox are taken in the directions of
the effective principal stresses to which the
assembly of particles are subjected. At any
increment of stress, it is also assumed that the
directions of the principal strain increments
coincide with oz, oy, and ox.

Fig. (A1)
Then, for the two particles in contact, let

Lz, ;y’ Lx = the resultant forces acting at the
point of contact in the z, y, and x
directions, respectively,

Ay, AZ = the areas normal to the y and z
directions, respectively,

6”,0",0" = the effective principal stresses acting

R A on the assembly in the z, y and x
directions,
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B = the direction of the sliding contact,
measured with respect to the x-z
plane as shown in Fig. Al.

Case (1) o >0 20", (Fig. A2a):
z  yFx

Fig. (A2a)
In a plane parallel to the z-y plane

(L /1y) = tan(e, +8,y ) (A1)
and (L,/L,) (A, /A;) = (o /q)
Ly Ay - tangztan( OytBzy ) (A2)

Similarly, in a plane parallel to the z-x plane,
(0,/04) = tana,, tan( 9, *Bzx ) (A3)

where o and B are the angle of interlocking and the
B8-angle, respectively, in planes parallel to the
planes indicated by suffixes. The suffix zy (or zx)
indicates that sliding is occurring in the plane zy
(or zx) towards the y (or x) direction.

At any instant of loading, let the volume of an
element be denoted by V; thus, during a small
increment of loading:

§AV/V = e +6ey+8ey,
§dv
or (1 __&_;v) = = (sey/sc )+ (sey/se ) (A4)
where Se,y Seyy SE,= increments of the natural

strain in tge z, y and x directions
respectively, and are positive if compressive,

and §dV/V = an increment of the natural volumetric
strain, and is positive if compressive.

Considering displacements in the z, y and x direc-
tions, then during a small increment of loading,

—(8e /8e ) = k tan o« _tan B__, (A5)
y z ZX ZX

It

(1 - k)tan o«__tan 8, (AB)
zy zy

and —(Gey/Saz)

where k = a constant during a small increment of
stress.

Let §W = an increment of energy absorbed during a
small increment of stress, ’

W =0"8e +0 8 + o 6 ,
z z y y X X

then  (§W/o"8e ) = (1 - 1/8E),
Z Z

where 6E = ~(¢6768e /o7 6e +076e ) (A7)
z z y y x X

]

(Work in/Work out)

From equations (A2), (A3), (A5), and (A6), then,



E =
tan( ¢, +B..,) tan( ¢, +Bxy)
(l—k)tanBZytan(¢piﬁzx)+ktanﬁzxtan(¢H+Bzy) (A8)

For the energy absorbed in a small increment of
stress to be a minimum, § E should be a minimum.

Hence, (865/agzy) = 0, and (BSE/BBZX) = 0,
and from which we find:

g, .= (45 - ¢p/2) (A9)

ZX

and g__= (45 - ¢p/2)

2y (A10)

Thus at the critical condition of minimum energy,

8 B8, .=B (A11)

2y =Pox (45 - ,/2)

critical ~

and from equations (A2), (A3), (A4), (A5), (A6), and

(A11), then.

.y . §avV/Vv 1

<Uz/gx) = (1 - Se )[k+(l~k)(o)/o))
z Xy

]tan2(45+¢p/2),

“/67) = A12)
or (oz/cx) DprP (

sdv/V
Se

x = 1/[k + (1 - k)(o;/o;)],

where D = (1 -

) is the dilatancy term,

and Kp = tan2(45+¢u/2).

From equations (A2), (A3), (A5), (A6), and (All)
then,

k = (G;GEX)/(0;65X+ d;dey) (A13)
Equations (A11)~(Al13) only apply at the critical
condition of minimum energy. Equation (Al2) is thus
a lower bound.

Case (2):

Fig. (A2Db)

In a procedure similar to Case 1, the corresponding
equations can be written as:

(Ly/Ly) = tan(By,-0,) (A1')
and (o7/0y) = tanay,tan(8y,-¢,) (a2')
(0z7/0y) = tanay,tan(By,—o,) (A3")
(1 - i;%) = —[(sey/6e,)+(sex/se,) ] (ad1)
- (8ey/8e,) = ktanay tan 8, (A5")
- (8ey/8e,) = (1-k)tanay tanB (A6")

Therefore 8w =0 8e+0  8e+0’ 8¢
zZ zy ¥y X X

and GW/G;SEZ = 1-gE'
where ¢E' = —(0;55y+0;6€X)/(G;652) (A7')
= (Work in)/(Work out)
SE' =
ktangygz tan(gyz—¢, ) +(1-k) tang,, tan(By-=0,) » (A8")

tan(gyzé¢p)tan(gxz—¢“)

and for the critical condition of minimum energy

— — — o
Byz=Bxz=B itical = (45 +0,/2) (A117)
Then, (og/ag) = (1/D)x Kp, (A12")
(A13")

k = (Ogéex)/(c£6eX+oy'nSsy)
where y =k + (1-k)(¢7/¢”) = 1/
Xy
and Kp, = tan® (45 +¢p/2)

Equations (A11'), (Al2'), and (Al13') apply only at
the critical condition of minimum energy when
sliding occurs at the critical g-angle.

It is interesting to note that, since sliding is
occurring in the opposite direction to that given in
case (1), Equations (A11') and (A12') may be
obtained from Equations (All) and (Al2) by
substituting oy with (—¢“).

Special Cases

-

(a) The Case of Axial Symmetry, where gZ>¢ =g
J

This is the case of the triaxial compression test.

P
Thus 0y=01,0y=03=03,ey=ey=ey, and e, =¢, .

By substituting in equations (A13) and (Al12), then
k=%,x=1, and (07/03) = DKp | (A14)

Equation (Al14) is the minimum energy criterion for
this case and in agreement with Rowe (1962).

(b) The Case of Plane Strain; ¢.>04>c; and e,= O.

-

. e s
0,701,0y=0,,0,=0;

€2TE 1) EyTE,= 0, and ey=e .
By substituting in equations (A13) and (Al12), then
k=1, xy =1, and (o:/o;) = DKpu (A15)
Rowe (1964) found that the test results did not
follow the minimum energy criterion given by
Equation (Al5); and the agreement was found by
replacing Kp, by Kp,,, where Kp_, = tan2(45+v¢cv/2)

(c) The Case of Axial Symmetry, where g/<gl =oz-

This is the case of the triaxial extension test.

PP
Thus 0,7055,0,=

o _ de =p =
y 04=0 118,765, an Ex~EyTE€1"

By substituting in equations (A13) and (A12), then
k =%, x =1, and (¢7/03)=(1/D)Kp (A16)

Equation (A16) is the minimum energy criterion
for this case and in agreement with Rowe, Barden and
Lee (1964).
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