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SUMMARY The paper contains the numerical analysis of viscoelastic stratified half space with cracks filled out by
air.  The cracks are of different type, size and location. The employed constitutive model assumes the
proportionality relationship between the spherical components of stress amd strain temsor and viscoelasticity law
between deviators. With respect to time variables the recurrent integral method is applied, while with respect to
spatial variables — the finite element is employed.

In order to analyze the efiect of cracks on the displacement and stress field, the computer program was prepared
and some numerical examples are investigated. The conclusions connected with risk induced by the variably located
cracks are drawn on the basis of numerical results.

Dot over e means the differentiation with respect to
time. It is assumed, that time dependent behaviour of
granular materials f1,2,3,5,6,8] will be simulated by
means of the three parametric standard model.  In
be analyzed in the scope of the theory of viscoelasticity. gonsequegoe_ thekexphclat form of the relaxation described
The most common way of the investigation of the ¥ eq. (2) is taken as:

temporal properties of the medium is through the t.(t) = 2 {[EL + (ES - EL)e‘ﬁt]e. {0} +
application of the time  dependent material 1 3

1. INTRODUCTION

It is well known fact, that granular materials like soil
exhibit time dependent behaviour. This property can

characteristics like Young modulus E, bulk modulus K t —A(t—r) -
or shear modulus G. & ' f (EL + (Es - EL)E At-) eij(f)d'r] (3)
In this paper the viscoelastic homogeneous and 0 , s s N
nonhomogeneous half space of layered type with cracks where the meaning of E; and Eg is indicated in Fig. 1
are subjected to the amalysis. The applied load is and f is the inverse of the retardation time,
quormly distributed over the circular area and The function which appears in equation (3) is the
simulates the load tramsferred by the wheel of the relaxation function and according to the definition
heavy vehicle. tepresents the time dependent stress induced by
uniformly applied state of deformation. The inverted
2.  FORMULATION OF THE PROBLEM relation to the equation (3) gives thencreep function,
We will consider the nonhomogenecus medium of L,

1 1 1
layered type with cracks filled by air. Each layer of &j (t) = wp— + [y - Q'E'"]Eﬁ Eg Yj (0) +
the medium is assumed to be isotropic. This fact L § L
enables one to split the stress-strain re[lationship into t o 1 1.8 Ep (t=7)
two independent parts, that is volumetric and e’ Bo VUL, (0)dr 4
deviatoric. It is commonly recognized fact in analysis j(; (TEE + GZEE * EE_I:) § ij “

of granular materials to relate the spherical components where J,(t) shown in Fig. 1 is the ¢reep function which
of stress-strain temsor to the proportionality law. 1
Mathematically, it can be expressed as: Hin

opp = SKeyy (1)

where
K -is the bulk modulus,
ke kk —stand for spherical components of stress and

strain i{ensor respectively.

In the paper, it is assumed that the bulk modulus is
constant, The time dependent properties of the
medium are comnnected to the deviatoric components of
stress and strain tensor. AL the constitutive level the Efl
integral approach available in the framework of the
theory of viscoelasticity is employed. Thus the
following type of relationship between deviators is taken
to the analysis:

Bt
£z 28 + 2 Eg-E e

t . 28

TORS _f) Ep (t =) g; (n) dr (2)

where T2g
. . . 7

tij’ eij —are the stress and strain rate deviator

tensors respectively . . .
E —denotes the relaxation function. Fig. L. Creep and relaxation function for the

1 applied model
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by definition describes the time dependent deformation
induced by the uniformly applied state of stress. In
analogy to the theory of elasticity, the relations (2) and
(3) involve the time dependent shear modulus, while
the temporal function of equation (4) represents the
compliance of shear modufus. The analyzed functions
connected with the applied model are shown in Fig. 1.

From Fig. 1, it is seen, that constitutive model has
finite value of shear modulus at t = + 0 and decreases
to finite value at ¢ = infinity. If means that the
applied model preserves finite value of stress never
reaching zere. The analysis of deformation reveals, that
with e¢lapsing time, the deformation terds to the finite,
stable value. Consequently, it means that the applied
model involved to the behaviour of deviatoric
stress—strain componenis has features of solid.
Combining the equation (1) with (3), after some
regrouping, the following constitutive equation is used
to the further analysis.

5 (1) = K e b5 + (B + (Eg - Bp) 67 (0)

{
— B e AT
+ fo [Ef, + (Eg - ByJe &5 (1) a7} (5)
where
Jij —is the Kronecker symbol,
%; ~stands for the stress components.

3. THE DISCRETE FORM OF THE TEMPORAL
BEHAVIOUR COF THE MODEL

Since the time dependent relationship is comnected with
the deviators of siress and strain, we will refer to the
equation (3), which for arbitrary time instant t, is

written as follows:
4j (t,) = 2B & (t,) + (Bg - EL)e“ﬁtn » (0)
t
+ J; - (Bg - EL)e‘ﬁ(tn—'r)éij (1) dr] ()

According te recurrent formulation, assuming the
correctness of the relationship (6) — the analogous

relation for the next time instant tn-{-l has the form:

biltarr)= 2EL &5 (b )+ (Bg - E e Ptns1 (0)
t
+ [0 (B - Bpefltars ey (1) dn) o
0

{7)
where ty 11 is translated by At with respect to the
time instant tn‘ ~

ij

Comparing the relationships (6) and (7), we wish o
formulate the temporally discrete formula for arbitrary
time instant which involves:

a previous time instant,
b current time instant,
¢ increment of time.

Thus, after some regrouping, the equation (7) can be
written as follows:

b () = HEp & (b)) + e‘ﬁm[eij (0) (Bg -

EL)e_ﬁf'u + J; 'n (Bg - EL)e"'ﬁ(tn_T) éij('r)dr] +

t .
J; D.+1 (ES - EL)e—ﬁ(tnq.l - T) eij (T) dT} (8)
n

It is worth to notice, that the last integral has fimite
value and is equal to:

1 - ¢ PAL
Mn = (ES - EL) e [eij (tn«i-l) = € (tn)]
A (tn+1 - t1:1)
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The glance at the equation {B) enables ome to mnotice
terms which have some physical interpretation.
Namely, the first term represents the current
deformation, the second one contained within square
bracket denotes the history of deformation, and the last
term of finite value defines the increment of history of
deformation.

The first integral from zero to t 41 cam be precisely
evaluated on the basis of formula (8) in the following

way:
tj (tngp) = 2B &5 Cpyy) + gl O
where sAt
I11+1 =¢e In + AIn (10)
The above described algorithm combined with equation
g), gives the following formula which consiiiutes the
iscrete form of the applied constitutive eguation.

a.; (i

i () = o K &5 + 2Bp elty ) +

1— e—ﬂAt

(Bg ~ Ey) Bl - W (e{tn ) — &5 () +
PAL (e (0) (Bg - E )P +

f s (Eg - EL)e“ﬁ(tn"T)éij () dr} (1)

o]

4,  NUMERICAL FORMULATION WITH RESPECT
TO SPATIAL VARIABLES

Toc analyze the described problem with respect to
spatial variables the finite element method (FEM) is
implemented [4,7,9]. Combination of the recurrent
integral method with respect to temporal variables and
FEM with respect to spatial variables leads to the
following discrete matrix equation valid for arbitrary
type of the finite element:

| — PR

(0° + (1Y [y, + (Bg - By) g}
Vopid = Bppgd - KV P01 o
By - Bp) AT SV} (1)
s = P g =R
where

[K]E, [K]V ~are the stiffness matrices connected

with elastic and viscous properties
respectively,
{Vop1h {v,} -are the displacement vectors related to

by +1 and t, time instanis respectively.

After determination of the displacement field, the siress
components are computed in accordance with the
following formula:

ofty,) = [DIF (B] {Vy 1} + DIV [B] (B{V,,q) +
e_‘am;I11 + (Eg ~ Ep)

1 — ¢ At
= WVagal = (V) (13)
where
[D]E, [D]V - are the material matrices connected
with elastic and viscous properties
respectively,
(B} — gtands for the deformation matrix,
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5. NUMERICAL EXAMPLES

The described constifutive model which employs with
respect to time variables the recurrent integral method
and with respect to spatial variables the FEM is used
in the analysis of some problems of practical
importance.

The geometry, boundary conditions, location of cracks
are shown in Fig. 2. The finite element mesh consists
of the eight noded isoparameiric quadrilateral elements.
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Fig. 2. Geometry, finite element mesh, load

and boundary conditions.

The time dependent analysis involves also two special
cases, that is the time instant t = 40 and t =
infinity. Regarding the effect of the location of the
cracks on the temporal displacement and stress fields
the following cases are analyzed:

1)  -homogeneous medium with cracks of different
location (notation of schemes 4HQ and 8HO),

2) -homogeneous medium with cracks of different
location (notation of schemes 8HI + 8H5),

3) -—nonhomogeneocus medium of layered type without
cracks {one layer of bitumen and soil - notation
of schemes — 8NO),

4}  -nonhomogenecus medium of layered type with
cracks (one layer of bitumen and seil — notation
of schemes 8NS1 + BNSS),

5)  -nonhomogenous medium of layered type without
cracks (double layer of bitumen and soil -
notation of schemes 8NOD)

6) --nonhomogeneous medium of layered type with
cracks ({double layer of bitumen and soil -
notation of schemes — 8ND1 + 8ND5)

The first number in the notation of schemes defines the
number of nodes connected with the FE used in the
analysis. The location of the cracks in the scheme is
denoted by the last number in the notation of schemes.
That is: single crack in the top layer — as 1, single
erack in the second layer (from the top} - as 2, single
crack in the third layer ~ as 3, double crack, in the
top two layers — as 4, the triple crack in the top three
layers — as 5. The location of the cracks is indicated
in Fig. 2. For all cases described above, the common
value of the time step At = 100 15 used in numerical
computations.

In order to compare the accuracy of the results, the
four noded isoparametric element is used. The

comparative investigations are done for the homogeneous
medium in the absence of cracks and in presence of
cracks. The obtained results in terms of the
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displacement and stress fields almost coincide. Some of
the results in iterms of the temporal displacemeni field
are presented in Figs. (3 <+ 10). The comparison of
the displacements for different media for the first and
the tenth time steps are shown in Fig. 11. The
temporal diagrams of stresses for different analyzed
cases are shown in Figs. (12 + 14). The temporal
variability of stress components is computed for the
element denoted as 28 located at the tip of the crack
(below the crack).

VERTICAL DISPLACEMENTS .. 4HO_
1p. 20. 3p. 40. 50. £0. t
—

———TJIME STEFR voe-w TIME STEPLE - . WYIME STEP.9
—=.TIME STEP.2 —— TIME STEP.8 o.__.TIME STEP.10
Fig. 3. The vertical displacements for the

homogeneous medium without cracks

for indicated time steps (4 noded FE).

VERTICAL DISPLACEMENTS _4H5_

10 20. 30. 40. 50, 60. t

—TIME STERI e TIME STEP. & __ _TIME STEP_9
—_-TIME STER3 — TIME STEP.B  _.__TIME STEP_10
Fig. 4. The vertical displacements for the

homogeneous  medium  with  cracks
located in top three layers for indicated
time steps (4 noded FE).
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for indicated time steps (8 noded FE).

VERTICAL DISPLACEMENTS - 8HO_ VERTICAL DISPLACEMENTS. 8NSO.
10, 70 30 :.p.‘s?./mr 7. t .
—od
—02
-.03]
.05
~.08f"
____TIME STER . TIME STEP.6 . -TIME STERS _TIME STEP.1 . TIME STEP.6  — _TIME STERS
__TIME STER3  —w— TIME STERS ..—TIME STEPIO _ _ TIME 5TER3 — HIME STEP.8  ____TIME STER10
Fig. 5. The veriical _ displacements of  Fig. T. The  vertical  displacements for
homogeneous medium without cracks nonhomogeneous medium (one layer of

bitumen and soil) without cracks for
indicated time steps {8 noded FE).

VERTICAL ODISPLACEMENTS 8NS5

VERTICAL DISPLACEMENTS_BH5.
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— _ TIME STERA _—_TIME STEP.B - TIME SIERID
Fig. 6. The vertical displacements of

homogeneous

located in the top

medium  with

cracks
three layers for

indicated time steps (8 noded FE).
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Tig. 8. The

vertical displacements for
nonhomogeneous medium {one layer of
bitumen and soil) with cracks in the
top three layers for indicated time
steps (8 noded FE).
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VERTICAL DISPLACEMENTS _GNDO

VERTICAL

DISPLACEMENTS_COMPARISON
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Fig. 9. The vertical displacements for

nonhomogeneous medium (two layer of
bitumen and soil) without cracks for
indicated time steps (8 noded FE).
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Fig. 10. The vertical displacements for

nonhomogeneous medium {two layers of
bitumen and soil) with cracks in the
top three layers for indicated time
steps (8 noded FE).
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Fig. 11. The

comparative  distributions o

vertical displacements for indicates

time

steps (8 noded FE).
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RADIAL STRESSES IN TIME
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The temporal radial stress distribution
for indicated cases of the analysis
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Fig. 14. The

(Gaussian point).
6. CONCLUSIONS AND FINAL REMARKS
In the paper the viscoelastic homogeneous and
nonhemc)gegegus medivm with varably located cracks
are subjected to the analysis. The problem employs
the simple type of constitutive model for which the
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stress
distribution for indicated cases of the
analysis (el.nr.28, 8 noded FE ~ middle

volumetric components of stress and strain tepsor are
related to the proportionality law, while the time
dependent properties are connected to deviatoric
components, The temporal discrete analysis employs
the recurremt integral method, while with respect to
spatial variables the FEM is used. The applicability of
the described model to the investigation of the effect of
cracks on the displacement and stress field is analyzed
on the basis of some examples of practical importance.

The obtained results form the basis to the following

conclusions:

1) The main factor which effects significantly the

magnitude of the vertical displacements is due to
the thickness of the bitumen layers.
For comparison: The equivalent displacements of
the homo%eneous medium are three times larger
than the analogous displacements of
nonhomogenecus medium which consists of single
layer of bitumen and the soil medium. The
equivalent displacements of the homogeneous
medium are six times larger than the analogous
displacements of the nonhomogeneous medium
which consists of double layer of bitumen and the
soil medium.

2)  The presence of the inner cracks (covered by the
top layer) — located, in second and third layer has
no substantial influence om the magnitudes and
the shapes of the deflection surface.

3} A basic change in the shape as well as magnitude
of the deflection of the top surface takes place
when the cracks start to appear from the top
surface. In this case a sharp jump producing
discontinuity of the deflection surface is observed
in the closest vicinity of the cracks. The
magnitude of the displacement jump depends
heavily on the depth of the cracks. From this
fact it follows, that the application of the load in
the vicinity of the top cracks highly increases the
risk of failure of the medium through the large
discontinuous deformations.

4)  The analysis of stress field for investigated cases
indicates that for homogeneous materials all stress
components increase with time, For the media
with cracks the radial @, and vertical g, stress

components have tendency to decrease.
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