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SUMMARY In this paper, the basic concepts of fuzzy mathematics are described and applied to several important problems in
rock engineering. A method is presented for determining the fuzzy values of typical rock mass parameters. The limit
equilibrium method is used as the basis for calculation of the stability factor for a rock slope and fuzzy arithmetical operations
are required to evalvate this factor because the parameters used in the calculation are considered to be indistinct. The
techniques presented in the paper are iilustrated by typical example calculations.

1. INTRODUCTION

Many methods of analysis have been formulated to
allow quantification of the degree of stability of
structural  systems. In rock slope engineering the
predominant technique is the limit equilibrium method.
However, most of these analyses are strictly
deterministic in context, i.e. they assume that the
structure and its environment are deterministic
guantities. In most of these analyses, a criterion for
structural stability is generally established. Suppose a
state parameter K is defined as a function of
uncorrelated random vagables x,, x,, ..., X,, all of which
have an influence on structural stability. The equation

K(xz, Xy ey ;cn) =0 oy

is called the limit state condition. For example, if we
consider the simple problem of a sliding block and
assume that X is a function of a resistance force R and a
sliding force S, both acting in the direction of sliding,
then the limit state equation can be written as

K(RS)=R-8=20 2)

Thus the structure will be stable when XK = @ and,
conversely, failure will occur when K < 0.

Although this is essentially a deterministic
representation  of stability, some parameters involved in
the calculation may be "inexact" or "indistinct", in that
their precise values may be difficult to determine. In
other words, uncertainties exist in most aspects of
structural  stability, particularly when such problems
occur in mature. Loads, environmental factors, material
properties, and structural dimensions are usually difficult
to predict due to lack of sufficient data. Furthermore,
knowledge of the full complexity of the problem is often
imperfect, i.e. some of the mechanisms that control
stability may be poorly understood, which gives rise to
additional uncertainty.

The ratio of the resisting force to the sliding force atong
the failure plane is cailed the stability factor. Thus this
conventional stability factor, which is obtained from

appropriate calculation, can be considered to be "fuzzy",

e.g. although the calculated value of a stability factor
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may be greater than one, there is a finite probability
that its true value may be less than one. It is because of
this "fuzziness” that the stability number should not be
called a safety factor.

It is worthwhile to pursue a method of analysis which
can adequately describe the “fuzziness" for this and
other probiems in rock engineering. Fuzzy mathematics
{(Zadeh, 1965) has provided a potential tool for solving
many real engineering problems and (o date it has been
used successfully on a number of important practical
problems (e.g. Nguyen, 1985; Boissonnade, 1986; Xiao
& Zhou, 1987; Kacewicz, 1987, Sakurai & Shimizu,
1987; Xiao & Yu, 1989; 1990).

In this paper the basic techniques of fuzzy mathematics
are described. The method is used to evaluate the
stability of rock slopes where potential failures are
determined in each case by a single joint plane on which
sliding of a rock block may occur. The use of the
method {0 describe the fuzziness of ome of the rock
mass strength parameters is also illustrated.

2. BASIC CONCEPTS OF FUZZY MATHEMATICS

In this section some basic definitions and some of the
important concepts of fuzzy mathematics are presented
for completeness. More details are discussed by Zadeh
(1965, 1973). Where appropriate, the important
concepts are illustrated by examples.

2.1 Definition of a Fuzzy Set

A fuzzy set of objects x is defined as a set of ordered
pairs, i.e.

I={p®,x} 3

where u(x) is termed the "grade of membership of x in
I", u(x) may only take values in the closed interval [0,1].
For example, in structural problems, if stability is almost
certain to occur, then p(K) is equal to 1. This means
that the membership function u(K) can be regarded as a
linguistic variable. In reality, there are many cases in
which the transition from membership to non-
membership of an object in a set is gradual rather than
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abrupt. For such cases the grade of membership of x in
I is represented by values of p,(x} in the range from 0 to
1. If the fuzzy set I contains a finite number of
members, then it can also'be expressed as:
I=pe)ix Up ez U, ..
ool p e, = fu,(x)[x
The symbol | is used to represent the union operation,
and the symbol / denotes the correspondence between
an object in the set and its membership function. { is
used here to represent all relationships between
elements of the fuzzy set [ and their degrees of
membership. | is mot used here to denote integration.

)

2,2 Fuzzy Number

A fuzzy number is a quantity that is characlerised by a
distribution ({either discrete or continucus) of possible
values. For example, consider the case where the
cohesion ¢ of a rock mass can be regarded as a fuzzy
number, which is expressed as

¢ = 0.8/95 |J 1.0/100 |J 0.7/105.

In loose terms, this is the same as stating that ¢ is
"approximately 100", More formally, the above
expression means that the cohesion has several possible
discrete values, viz, a value of 100 with a membership
grade of 1.0,a vaiue of 95 with a grade of 0.8,and value
of 105 with a grade of 0.7. Thus the membership
function expresses the likelihood that the parameter has
the nominated value.

2.3 Extension Principle

One of the basic ideas of fuzzy set theory, which
provides a general extension of nonfuzzy mathematical
concepts to fuzzy environments, is the extension
principle. Consider a function fthat provides a mapping
of the real number x onto y, i.e. f x - y. This mapping
concept can also be applied to fuzzy numbers, i.e. if Jis
fuzzy number, then £ I - f{I). This is called an
"extension" of the mapping f.

From the extension principle, two inferences may be
obtained and these are discussed below.

2.4 Inference 1

If C is a constant, then
Cx [ iz = [ Nz ©)

where * denotes one of the arithmetical operations of
multiplication, addition, division or subtraction. In other
words, the first inference of the extension principle is
that any arithmetic operation on a fuzzy set implies that
the same operation is carried out on all elements of the
set, but the values of the membership function for the
newly formed set are the same as those of the original
set.

2.5 Inference 2
If f is a relationship or a monotonic function that

provides a mapping from x to y and [ is a fuzzy set
expressed as

= [ @

then
Afu = foF M

This equation states that the image of I under the
relationship fcan be deduced from the knowledge of the
images of x under f.

2.6 Theorem

If I, J and K are three fuzzy numbers and their
membership functions are p,, p, and g, respectively, and
if K = I *Jis the result of an arithmetic operation on
the fuzzy numbers J[ and J, then the membership
function of K is given by

Rl = V(@ A o)) &

where Vv is the symbol used to indicate that the
maximum should be selected from all possible values of

the membership function, and A is the symbol used to
indicate that the minimum should be selected from the

possible values. Zero must not be a possible value of
the fuzzy number J whenever * represents the operation
of division,

Example
An example is now presented to illustrate some of the
definitions and concepts discussed above. Suppose fuzzy
numbers [ and J are given as follows
I=0731.0210.81
J=09/3(J0.6/2

then the operation of addition of these two fuzzy
numbers can be represented as

il

[+7 = (0.7A09/G+3) U (1.0A0.9Y2+3) U
©.8A0.9(1+3) | (0.7A0.6)/(2+3) 1

(1.0A0.6)/(24+2) 1 (0.8A0.6)/(2+1)

0.7/6 | 0.9V 0.6)/5 | (0.8 0.6)/4 | 0.6/3
=0,7/6 |J0.9/5 | ] 0.8/4 | 0.6/3

3. DETERMINATION OF FUZZY PARAMETERS

One of the most difficult problems in applying the above
techniques in practice iavolves determining  the
membership  function for the parameters that are
considered to be fuzzy. This problem arises in most
applications, including the stability analysis of rock
slopes. In this case the parameters which are important
include those defiming the geometry of the rock slope,
its geological features such as jointing and bedding
planes, and the shear strength of the planar features
upon which rock blocks may slide. Data defining these
"properties® are usvally determined  from field
observation and laboratory testing or are estimated on
the basis of experience.  Discrete measurements or
estimaies of the important parameters are usuvally
provided and more than one measurement of each
parameter may be available. Since the data which are
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obtained from testing or cobservation may take a wide
range of values, it is convenient first to normalise the
primary data before proceeding to the determination of
the membership function,  Furthermore, it may be
possible to measure or determine values for the design
parameters in a variety of different ways. It is therefore
desirable to have a rational means of assigning weights
to the parameter values, based upon their method of
determination.  Suitable processes for normalising the
data and for rationally selecting the weighting factors
are considered below.

3.1 Normalisation of Data

Let X = {x,/, x', ... .x,'}, where X is a set of data to
be normalised. Normalisation of the data is carried out
according to the following formula

;=
0 _ x-x' (9}

;=

where the mean of sample X containing m values is
given by

5 _ L no, (10)
x -(m)?‘;x,-

and its standard deviation is

1 — (11)
s = ;,%: (g~

If normalised data is required in the range [0,1], the
extreme value standardisation  formula may be
employed, i.e.

i
x) -Mint}
X

s —_— (12)
Max(zx)-Mintx]

where Max{x,"} and Min{x,”} denote the maximum and

minimum values, respectively, of the set of values x;".

Example

Suppose there are five measurements of the one
parameter, ie.x,’ = 12.2,x" =7.5,x' =7.0,x' =67,
and x5’ = 6.1. The mean and standard deviation of this
set of data can be computed from equations (10) and
(11} as 7.9 and 2.2, respectively. The values of x,” are
computed using equation (9), i.e. x" = 1,95,
X" =018, %" =-041, x," =-0.55and x" =-0.82.
Hence, the sample data can be normalised onto the
closed interval [0,1] using equation (12) to give: x, = 1,
X =023 x»=015,x, =0.land x; = 0.

3.2 Weighting Factors

In many practical problems it may be possible to obtain
estimates of any one design parameter by a variety of
means, As mentioned above, it is desirable to have a
rational means of determining weights to be assigned to
each of the measurements, according to the “reliability"
of each of the different methods of assessment, If one
method is more important or known to be more reliable
than others, then it should be assipned a large weight.
Conversely, if sometimes a method is known to produce
doubtful or even spurious results, it should be assigned a
low weight, A method for determining the weighting
coefficients is now described.
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If there are n measurements of a given parameter, then
the nxn matrix V of influence coefficients is first
established, i.e.

Vll VIZ tn
s T Ve Vi, 13
V;ul Vn‘l VM

where the relative importance of the measurement or
estimate m; compared to m, is quantified by the
influence coefficient V. Suggested values for V, are
shown in Table I,

TABLE 1

INFLUENCE COEFFICIENTS

Description Values
of V;,
m, is as important as 1

1, is only slightly more impartant than m;

i is obviously important than

3
5
niy is much more important than m, 7
9

m; is overwhelmingly important than m;

Note: Intermediate values of the influence coefficient
may be defined, i.e. 2, 4, 6 or 8, as appropriate, If m, is
less important than 1, then the reciprocals of the values
of ¥, shown in Table I are used in the matrix V, i.e. Vi
= UV; forizjand V; = 1.

Finally, the weight assigned to the factor m; is defined by
a weighting coefficient w, i.e,
w,

W, = —

n
2w,
i=1

(14)

where

" 1/
;‘Ti = [ H Vi } %)
fnl

Values of w; will always be between 0 and 1 and the
sum of the weights w; will always be 1.

3.3 Membership Function

There exist many functions that could be used to define
the membership of a fuzzy number. In this paper, the
form of the membership function for problems in rock
mechanics is suggested by the normal distribution used
in probability theory. An important difference here is
that the membership function is "weighted” according to
the method by which the fuzzy parameter was

determined.  Accordingly, the membership function of -
the fuzzy parameter x, is suggested as follows
g Gond (16
plx)=e ™
where the mean of the values is determined by
- 1 &
x=— ¥ ox, (17)

il
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TABLE 1II

ROCK MASS PARAMETERS AND CSIR ROCK MASS RATINGS FOR MARBLE
(After China Nonferrous Metal Company and Daye Nonferrous Metal Company)

< a, Condition { Ground | Joint
Parameters | MPa MPa RQD i of Joints water | arient-
ation
Values 19 79.4 70% 7 - - -
CSIR - 7 10 20 7 -15
ratings
Note: c; is the cohesive strength of the intact rock,
g, is the uniaxial compressive strength of specimen,
RQD is a measure of the drill core quality,
i is the intensity of jointing, measured as the number of joints per metre,

and £ is called ‘“resolution number" whose value
determines the "width" or "scale" of the membership
distribution.

In general, a design parameter P can be expressed as a
fuzzy number, as follows

Po= pixe)fix U pegx, UL (18)
o U pGe ),

There is thus some ambiguity about the value of P, and
X;, X3, ... X, are all possible values,

4, ILLUSTRATIVE EXAMPLES

To illustrate the use of the techniques described above,
two different types of example are considered. In the
first, the parameters that are commonly used io
characterise the mechanical behaviour of a rock mass
are discussed. In particutar, a methed to determine
fuzzy values of cohesive strength of a rock mass are
presented. In the second example, the problem of rock
slope stability is addressed.

4.1 Example 1

In any discussion of rock parameters, it is important to
distinguish characteristics of a specimen of intact rock
from the properties of the rock mass as a whole. Tt is
well known that the behaviour of the rock mass depends
on the rock substance, the discontinuities as well as the
presence of water and the existing in situ stress regime.
At present, there are a number of methods which are
used for determining rock mass strength properties on
the basis of the strength of the intact rock material
measured in the laboratory. For a given rock mass,
different methods will result in different estimates of
strength properiies of the mass. Hence, in accordance
with the concepts presented above, these parameéters can
be considered (o be "fuzzy'. As an example, it is
possible to represent the cohesion of a rock mass by a
fuzzy number, and procedures for doing this are
presented below.

Consider a marble rock mass for which both field and
faboratory data arc available (China Nonferrous Metal
company et al, 1987), as shown in Table II.

Using these data, at least four methods can be employed
to estimate the cohesion of the rock mass which is
denoted by c,. These methods are described below.
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(a) The CSIR geomechanics classification scheme for
Jjointed rock masses (Hoek & Brown, 1980) may be used
to provide an estimate of the rock mass cohesion. The
data in Table II indicate that the overall rock mass
rating (RMR) is 42, and so the rock mass can be
described as Class III.  For this class of rock mass the
CSIR scheme suggests that the cohesion is likely to be
in the range 150 - 200 kPa. For the present purpose a
value of ¢, = 180 kPa has been selected as
representative.

{b) The empirical strength criterion suggested by Hoek
and Brown (1980), may be used to describe the strength
of the rock mass, i.e.

g, = u3+u'mocaa+sczc (19)

Where ¢, is the major principal stress, ¢; is the minor
principal stress applied to the specimen and m and 5 are
constants which depend upon the properties of the rock
and upon the extent to which it has been fractured
before being subjected to the stresses o, and o3,

As mentioned above, the total tating of the rock mass is
42. Hoek and Brown (1980) have suggested an
approximate relationship between rock mass qualily and
the empirical strength constants. Based on this
relationship the comstants m and s arc estimated as
m=0.5and s=0.0001.

Using the data in Table II, and the values of # and s
deduced above, Mohr circles of stress corresponding to
failure may be drawn. Hence the cohesion of the rock
mass, applicable over the normal stress range from 0 to
10 MPa, can be determined graphically by fitting a
straight line envelope to the failure circles. Following
this procedure a value of ¢, = 220 kPa can be
abtained.

(¢} Hubbert et al (1960) have suggested a correlation
between the intensity of rock jointing and the cohesion
of the rock mass. This correlation is presented in
Figure 1, where the ratio of rock mass cohesion, c,, to
the cohesion of the intact rock, ¢, is plotted against i,
the "intensity" of the jointing, Based on this relationship
and using the values of ¢, and i presented above, a value
for the rock mass cohesion is estimated as ¢, = 608
kPa.

(d) China Nonferrous Metal Company and the Daye
Nonferrous Metal Company (1987) have deduced from
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Cohesion of Rock Mass/Cohesion of Inlact Rock
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Figure | Relationship between joint spacing and cohesion
of tock mass (after Hubbert et al)

their experience that a value of ¢, may also be
estimated from the formula

¢ il (20)
™ (+25)

For the rock mass in question, equation (20) provides an
estimate of ¢,,, = 554 kPa.

Each of these four estimates of the rock mass cohesion
can be normalised onto the interval [0,1], using
equations  (10)-{13), to give:r c,;, =0, c,; = 0.094,
C.; = 1.0and c,, = 0.967.

In this example, the first method for determining c,, is
considered only slightly more important than the second,
and much more important than the third, and obviously
more important than the fourth. The matrx V, ranking
the refative influence of each method, is established on
the basis of Table I as follows:

1 3 75
3143 @1
Y7 4 1 2

Y5 173 142 1

The weighting coefficients for each method can be
oblained from equation (15), as w, = 0.576, w, = (.254,
w; = 0,093 and w, = 0.077.

Based on experience, it is suggested that a reasonable
value of the resolution number £ is 0.2 for this case, It
should be noted, however, that a rational means for
determining appropriate values of £ for other types of
problem have not been developed. This matter requires
further research.

Substituting  the normalised data, the weighiing
coefficients and the resolution number into equation
(17), the membership grades of the fuzzy number c,, are
obtained as p(c,,) = 0.94, ul(c,,) = 0.81, plc.) = 0.60
and p(c,s = 0.59. Therefore, the fuzzy number ¢, can

be expressed as foilows:
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¢, = 0.81/180 | 0.94/220 {J 0.6/608 {] 0.59/594 kPa
4,2 Example 2

Consider now the problem of the sliding of a rock block
on a planar sliding surface, as shown in Figure 2. H is

the height of the slope, v is the unit weight of rock
mass, f is the slope angle and # is the inclination of the
potential failure plane. Gravity acts in the vertical

direction. The shear strength of the planar interface is
described by the Mohr-Coulomb criterion with a
cohesive component of the shear strength ¢ and friction
angle ¢ .

Under the action of gravity, the sliding force per unit
width acting along the failure plane is obtained from
simple statics as:

- iEy _smf, . 22
F 2 (cosp tane)sm[} (22}

ks

where L is the length of failure plane.

The force resisting this sliding can be shown to be:

F_= L—[;Y (cosﬂ—%g—) cosf tand + Le 23)

The slope stability factor is conventionally expressed as:

K = L 2Zc y land 24)
F; vH (cosp - sinp sinf tanf
tanf

In this example, ‘the parameters ¢, ¢ and 8 are all
regarded as fuzzy numbers. They are defined as follows:

1/100 1 0.7/105 kPa

1/35° {J 0.8/37°
1745° [ 0.5/43°

tnon

c
¢
B

The remaining parameters defining this problem are
assumed to have "crisp" {(non-fuzzy) values, i.e.

¥ = 20 kN/m*, H =40m, § = 60°

The stability factor may be calculated from equation
(24), using Inferences 1, 2 and the theorem presenied
previously to perform the appropriate arithmetic
operations on the fuzzy numbers. These operations give
the fuzzy stability factor as:

K = 051.705/1.81] 1.0/1.9 ] 0.8/2.0
Josr2ios2.2

T

Figure 2 Geometry of the slope
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TABLE ITI
QUALITATIVE DESCRIPTION
OF THE MEMBERSHIP FUNCTION
Value of
Class Membership Meaning

Function
1 wXy =0 Certainly will not occur
2 0 <uK) < 0.1 | Very unlikely to occur
3 0.1 < g(K) ‘= 0.3 | Seldom occurs
4 0.3 < u(K) < 0.5 | Could occur
3 0.5 < u(K) < 0.7 ] Likely to occur
6 0.7 < p(K) = 0.9 | Very likely to occur
7 0.9 < w(K) < 1.0 | Will almost certainly occur

In order to describe the possible distribution of the
siability factor X, Table III provides suggested meanings
that are to be associated with selected values of the
membership function for K.

The relationship between K and its membership function
is shown in Figure 3. This figure indicates that a
stability factor of 1.9 has a value of the membership
function equal to 1. According to Table III, this
outcome can be described qualitatively as "will almost
certainly occur”, A value of the factor equal to 2.0 is
"very likely to occur" and other values of the stability
factor, viz. [.7to L.§and 2.1to 2.2 "could occur".

1.4 1 e T i 7 T |

i l | | !
1.6 1.7 1.8 1.9 2 2.1 22 23 24
Stabiity Factor

Figure 3 Fuzzy stability factor

5. CONCLUSION

The methods presented in this paper can be used not
only to establish a model for describing complex or
imperfest systems, but can also make full use of human
ability to handle imprecise and vague information.

The procedures required to determine the fuzzy number
in tock engineering and the fuzzy stability factor for a
rock slope have been presented, together with the
essential background theory of fuzzy mathematics.
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