
  

INTERNATIONAL SOCIETY FOR 

SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 
 

 

 

 

 

 

 

 

   

  
 
 
 
 
This paper was downloaded from the Online Library of 
the International Society for Soil Mechanics and 
Geotechnical Engineering (ISSMGE). The library is 
available here: 
 
https://www.issmge.org/publications/online-library 
 
This is an open-access database that archives thousands 
of papers published under the Auspices of the ISSMGE 
and maintained by the Innovation and Development 
Committee of ISSMGE.   

 

 

 

The paper was published in the proceedings of the 7th 
International Symposium on Geotechnical Safety and 
Risk (ISGSR 2019) and was edited by Jianye Ching, Dian-
Qing Li and Jie Zhang. The conference was held in 
Taipei, Taiwan 11-13 December 2019.  
 
 

 

 

https://www.issmge.org/publications/online-library


 
Efficient Probabilistic Back Analysis of Slopes Accounting for Spatial Variation of Soil 

Properties 

 
Shui-Hua Jiang1 and Jinsong Huang1,2 

 
1School of Civil Engineering and Architecture, Nanchang University, Xuefu Road 999, Nanchang 330031, P. R. 

China.  

E-mail: sjiangaa@ncu.edu.cn 
2Discipline of Civil, Surveying and Environmental Engineering, Faculty of Engineering and Built Environment, 

The University of Newcastle, Callaghan, NSW 2308, Australia. 

E-mail:jinsong.huang@newcastle.edu.au 

 
Abstract: The probability distributions of uncertain soil properties can be updated with multiple sources of information 

including in-site measurements and field observations via probabilistic back analysis. The updated probability distribution 

can be further used for more realistic slope stability assessment. However, few attempts have been made to conduct 

probabilistic back analyses accounting for the inherent spatial variation of soil properties. This paper proposes an efficient 

probabilistic back analysis approach by integrating random field modeling, Bayesian updating and subset simulation. A real 

slope is investigated to illustrate the effectiveness of the proposed approach, in which the field observations on slope failure 

and location of the slip surface are incorporated in Bayesian updating.  
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1 Introduction 

 

A precise determination of material properties is an important prerequisite for slope stability analysis. Back 

analysis integrating with in-situ and/or laboratory testing, monitoring and field observation is one of important 

paths to understand the material properties and reduce slope failure risk (e.g., Duncan et al. 1999). However, it is 

not realistic to conduct in-situ testing and monitoring everywhere, some uncertainty remains due to the spatial 

variability of soil properties between measurement locations. The spatial variability not only can increase the 

uncertainty in predicting the material properties, but also can significantly influence the slope stability (e.g., 

Phoon and Kulhawy 1999; Jiang et al. 2016; Li et al. 2019). Although many sophisticated back analysis methods 

have been proposed for the estimation of soil properties, uncertainties due to the spatial variation are not 

properly accounted for in the back analyses (e.g., Gilbert et al. 1998; Zhang et al. 2010a, b; Wang et al. 2013; 

Ering and Sivakumar Babu 2016). Therefore, it is essential to perform probabilistic back analysis incorporating 

the spatial variability of soil properties based on multiple sources of site-specific information (e.g., test data, 

monitoring data and field observations). 

Many researchers have realized the importance of the inherent spatial variation of soil properties and taken it 

into account in the probabilistic back analyses and even in the reliability updating of geotechnical systems (e.g., 

Miranda et al. 2009; Papaioannou and Straub 2012; Ering and Sivakumar Babu 2017; Huang et al. 2018; Yang et 

al. 2018). Although the posterior distributions of soil properties can be evaluated analytically or numerically by 

sampling approaches in the back analyses, it is computationally demanding and not easy to implement. This is 

because the inference of the posterior distribution requires solving a high-dimensional integral. In addition, the 

current commonly-used analytical and numerical approaches are not effective to tackle the back analysis 

problems incorporating the spatial variation. For instance, the analytical solution of posterior distribution can be 

achieved only for particular conjugate priors (Ang and Tang 2007). The maximum likelihood method may 

induce a biased estimate of posterior distribution when the output response is a nonlinear function of uncertain 

input parameters (e.g., Zhang et al. 2010a; Wang et al. 2013). The Markov chain Monte Carlo simulation is 

inefficient for high-dimensional Bayesian inference problems due to the limitations including slow convergence, 

the choice of the proposal probability density function (PDF) and determination of the burn-in period (e.g., 

Ching and Wang 2016). The BUS approach (Bayesian Updating with Structural reliability methods) originally 

proposed by Straub and Papaioannou (2015) has been shown to be effective in sampling high dimensional 

posterior distribution (e.g., Betz et al. 2018; Jiang et al. 2018), but it is tedious and time-consuming because the 

evaluating of likelihood multiplier is coupled with subset simulation run (DiazDelaO et al. 2017). To this end, 

this study proposes an efficient probabilistic back analysis approach of slopes accounting for the spatial 

variability of soil properties and develops a stopping criterion for subset simulation (SuS) to solve the Bayesian 

updating problems. The proposed approach does not require evaluating the likelihood multiplier with the aid of 

the developed stopping criterion.  
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2 Probabilistic Back Analysis of Slopes 

 

2.1    Construction of likelihood function 

The BUS approach is extended herein for probabilistic back analysis of spatially varying soil properties. One 

critical step for Bayesian updating is to construct likelihood function, L(x), which is proportional to the 

probability of the observation event given X = x (e.g., Ang and Tang 2007). Where X is the vector of uncertain 

input parameters with a size of n, ( )T

1 2, , , nX X X= )T
, , nX, ,X ; x is the realization of X. In geotechnical practice, the 

observed slope failure or landslide information can be well utilized to back analyze the uncertain input 

parameters and update the understanding on the slope performance (e.g., Zhang et al. 2010b; Wang et al. 2013; 

Ering and Sivakumar Babu 2016, 2017). In theory, a slope failure or landslide implies that the factor of safety of 

the slope at the moment of failure is equal to unity. In practice, there might be uncertainties in defining slope 

failure. It is assumed that the slope failure is well defined such that the uncertainties associated with slope failure 

definition are minimized (e.g., Zhang et al. 2010b; Wang et al. 2013). In this way, the likelihood function that 

indicates the chance to observe slope failure can be established as 

( ) 1.0
( ) =

FS
L

z

z

m
f

s

é ù+ -
ê ú
ê úë û

x
x  (1) 

where f(.) is the cumulative distribution function of a standard normal variable; z  is a model correction factor 

for characterizing the uncertainty of slope stability model, which is frequently assumed to follow the normal 

distribution with a mean of zm  and a standard deviation of zs  (e.g., Christian et al. 1994; Zhang et al. 2010b; 

Wang et al. 2013); ( )FS x  is the factor of safety calculated using limit equilibrium or finite element methods. 

 

2.2    Inference of posterior distribution 

The BUS approach has been utilized to learn the probability distribution of spatially varying soil properties (e.g., 

Straub and Papaioannou 2015; Jiang et al. 2018) through transforming a high-dimensional updating problem into 

an equivalent structural reliability problem. The SuS is then employed to solve the structural reliability problem 

(Au and Beck 2001). Within the BUS approach with SuS, the likelihood function L(x) is utilized to define an 

observation domain XW  in an augmented outcome space x+ = [x; u]:  

{ }( )X u cLW = < x  (2) 

where u is the outcome of a standard uniform random variable U in [0, 1]; c is a likelihood multiplier satisfying 

the following inequality for all x: 

( ) 1.0cL £x  (3) 

The probability of the event { }XZ += ÎWx , P(Z), which is referred to as “acceptance probability” can be 

evaluated as a product of larger conditional probabilities of a set of nested intermediate events: 
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where P(.) denotes the probability of an event; ( )H +x  is a driving variable, ( ) ( )H u cL+ = -x x ; 

Z1É Z2É …É Zm-1É Zm are intermediate events defined as Zi ={H(x+) < gi}, in which gi, i = 1, 2, …, m, are 

threshold values satisfying g1 > g2 > … > gm-1 > 0 ≥ gm; P(Z1) is the probability corresponding to the first level of 

SuS; P(Zi|Zi-1) is the conditional probability of Zi given Zi-1; m is the number of levels of SuS required to reach 

the observation domain. Therefore, sampling the posterior distribution becomes equivalent to sampling the 

failure domain of the structural reliability problem for determining P(Z). The thresholds gi, i = 1, 2, …, m, are 

chosen adaptively such that the intermediate conditional probabilities take a target value p0. 

According to Eq. (3), the largest admissible value 
max 1 max ( )c L=

X

x  of the multiplier c can be o although 

the value of c is unknown before computation (Straub and Papaioannou 2015). Note that bias will be induced in 

the distribution of the samples if a value larger than cmax is used. Conversely, adopting a value smaller than cmax 

can obtain correct samples following the posterior distribution but less efficient. Moreover, the computational 

cost of the BUS approach decreases linearly with the logarithm of P(Z), which in turn is proportional to the value 

of the multiplier c as deduced from Eqs. (2) and (4). Thus, it is beneficial to choose c as large as possible such 

that the inequality in Eq. (3) holds (Betz et al. 2018; Jiang et al. 2018). Although Straub and Papaioannou (2015), 

Betz et al. (2018) and Jiang et al. (2018) developed adaptive approaches to evaluate the value of c as the 

reciprocal of the maximum of the likelihood function, it is found that they are tedious and time-consuming since 
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the evaluation of c is coupled with the SuS run. To remove the limitations, the observation domain XW  is 

rewritten as  

( )
ln lnX

L
c

u

ì üé ùW = > -í ýê úë ûî þ

x
 (5) 

Correspondingly, the driving variable H(x+) is 
( )

ln
L

u

é ù
ê úë û

x
, and the acceptance probability P(Z) is evaluated as 
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where b= -lnc is the threshold value. The intermediate events are defined as Zi ={H(x+) > bi}, in which bi, i = 1, 

2, �, m, are threshold values satisfying b1 < b2 < �< bm. With such an adjustment, the driving variable H(x+) no 

longer depends on the multiplier c and the choice of c is deliberately decoupled with the SuS run. The multiplier 

c only affects determination of the threshold value bmin = -lncmax beyond which the samples can be accepted as 

the posterior samples. The samples obtained from the highest level of SuS will invariably follow the posterior 

distribution as long as the multiplier c is sufficiently small to satisfy the inequality in Eq. (3). This implies that 

the distribution of the samples conditional on Z will settle at the posterior PDF of spatially varying soil 

properties as long as b is larger than bmin.  

 

2.3    Determination of stopping criterion for SuS 

Similar to cmax, the value of bmin is generally unknown but does not affect the SuS run for evaluating P(Z) in the 

improved BUS formulation. The SuS can be carried out with increasing levels until one determines that the 

threshold value bm of the highest level has passed bmin. One crucial problem is how to judge whether b has passed 

bmin. It turns out to be a more well-defined task if the complementary cumulative distribution function (CCDF) of 

H(x+), i.e. [ ]( )P H b+ >x  versus b, is found to have distinctly different characteristics for b < bmin and b > bmin 

(DiazDelaO et al., 2017). Following DiazDelaO et al. (2017), the probability [ ]( )P H b+ >x  can be expressed as 

[ ] min( )       ( )b

DP H b P e b b-
+ > = >x  (7) 

where PD is model evidence. As seen from Eq. (7), the CCDF of H(x+) will be converted into an exponential 

decay function once b has passed bmin. The corresponding curve of [ ]ln ( )P H b+ >x  versus b will be changed to 

a decreasing line with a slope of -1:1 once b > bmin. Whether b has passed bmin can be determined according to 

the variation of [ ]ln ( )P H b+ >x  with b. Obviously, this stopping criterion for SuS is subjective and qualitative. 

It is of necessity to develop a stopping criterion for SuS that has good computational operability.  

As mentioned earlier, to obtain the samples following the posterior PDF, bm > bmin as well as the inequality 

in Eq. (3) must be guaranteed. In other words, the following inequalities should be met at the same time: 

min( ) ( ) 1.0ib b
e L e L
- -< £x x  (8) 

It is not possible to determine an analogous right-hand side of inequality in Eq. (8) because the bmin is unknown 

in advance. To this end, an inadmissible set { }( ) 1.0ib

iB e L
-= >x  is defined, and the prior probabilities of the 

inadmissible sets Bi are given by (DiazDelaO et al. 2017) 

( ) ( ) ib

i ia P B P L eé ù= = >ë ûx  (9) 

Thereafter, the values of ai, i = 1, 2, �, m, are estimated, respectively, to judge whether the SuS run shall be 

terminated. As confirmed in DiazDelaO et al. (2017), as the level of SuS increases, the inadmissible set is 

monotonously decreasing and gradually approaches a null set, and the corresponding probability ai is a 

monotonously decreasing sequence of values converging to zero. Note that direct computation of ai is 

challenging since it involves a multiple integral. In this study, the value of ai is evaluated by means of 

performing an inner SuS run with bi obtained from the outer SuS run as input. The outer SuS run will be 

terminated once ai is found to be below 10-8. Then the failure samples are extracted from the highest level of 

outer SuS to infer the posterior distributions of spatially varying soil properties. It should be mentioned here that 

the value of ai can be set to be zero if it is less than 10-8, which leads to significant savings in computational 

costs, without significant loss of accuracy in the estimate of ai. Additionally, the inner SuS run for evaluating ai 

is independent of the outer SuS run for determining P(Z) and inferring the posterior distributions of soil 

properties.  
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3 Application to Congress Street Cut in Chicago 

 

In this section, the proposed approach is applied to back analyze the uncertain shear strength parameters of a real 

slope named Congress Street cut with four soil layers. The reliability of this cut considering the spatial 

variability of soil properties has been investigated by Jiang et al. (2016) and Li et al. (2019). A portion of the 

Congress Street “superhighway”, just east of Halsted Street, in Chicago, was built in an open cut. As reported in 

Ireland (1954), Congress Street cut was located mainly in saturated clays. The cut on south side with a length of 

about 200 feet failed in an undrained manner in 1952 during the construction of Congress Street in Chicago. The 

effect of pore water pressures on the slope stability was negligible.  
 

Table 1.  Prior knowledge of undrained shear strengths. 

 

Soil layer Variable Distribution Mean Standard deviation Lower bound Upper bound 

Clay 1 su1 (kPa) Truncated normal 136 50 0 272 

Clay 2 su2 (kPa) Truncated normal 80 15 0 160 

Clay 3 su3 (kPa) Truncated normal 102 24 0 204 

 

Following Chowdhury and Xu (1995), the cut has a height of 14.1 m and two slope angles of 36.3° and 36°, 

respectively. Below the upper layer of sand, there are these clay layers denoted, from the top down, as clays 1, 2 

and 3, respectively, each of which has its corresponding undrained shear strength (see Figure 1). The sand layer 

has negligible influence on the slope stability because of zero cohesion and low normal stress (Chowdhury and 

Xu 1995). Therefore, the cohesion and friction angle of sand are treated as deterministic quantities, they equal to 

0 and 30°, respectively. The undrained shear strengths, su1, su2 and su3, of three clay layers are modeled as 

truncated normal random fields. A two-dimensional exponential autocorrelation function is adopted to 

characterize the spatial variation of the undrained shear strength in each clay layer. The horizontal and vertical 

scales of fluctuation of 40 m and 4.0 m are selected based on the typical variation ranges summarized in Phoon 

and Kulhawy (1999). Table 1 summarizes the prior knowledge of the undrained shear strengths. The random 

fields in three clay layers are discretized into 434, 773 and 522 elements with a side length of 0.5 m, respectively. 

The total unit weights of four soil layers are 18.5 kN/m3. Based on the means of uncertain input parameters, the 

factor of safety calculated using ordinary method of slices is equal to 2.27, which is identical to the value (i.e., 

2.1396) as reported in Chowdhury and Xu (1995). In addition, the critical slip surface is also located which 

passes through four different soil layers as shown in Figure 1.  

 

Distance (m)

0 5 10 15 20 25 30 35 40 45

E
le

v
a
ti
o
n
 (

m
)

0

3

6

9

12

15

18

Critical slip surface

(FS = 2.27) 

3.0 m thick clay 3 (su3)

6.0 m thick clay 2 (su2)

4.5 m thick clay 1 (su1)

3.3 m thick silty sand (j)

 

A B

C D

Distance (m)

0 5 10 15 20 25 30 35 40 45

E
le

v
a

ti
o

n
 (

m
)

0

3

6

9

12

15

18

 
  

Figure 1.  Geometry, random field mesh and stability 

analysis result of Congress Street cut in Chicago. 

Figure 2.  Slope with 1164 randomly generated potential slip 

surfaces. 

 

Figure 1 in Ireland (1954) showed the approximate geometrical size of the cut and the location of slip 

surface at the moment of cut failure, from which two important field observations can be obtained: (1) The 

observed slope failure (i.e., FS ≤ 1.0) information can be used to construct the likelihood function using Eq. (1); 

(2) The observed entry and exit regions of the slip surface can be utilized to generate the potential slip surfaces 

for slope stability analysis. As shown in Figure 2, a total of 1164 potential slip surfaces that cover the failure 

domain of the cut are generated randomly based on the entry and exit regions (AB and CD).  

Following Christian et al. (1994) and Zhang et al. (2010b), the model correction factor z  that is assumed to 

be normally distributed with mean 
zm = 0.05 and standard deviation 

zm  = 0.07 is employed to construct the 

likelihood function. With the likelihood function and prior knowledge of undrained shear strengths, the proposed 

approach is adopted to infer the posterior distributions of su1, su2 and su3. To yield satisfactory computational 

results, 10 independent runs of the BUS approach with SuS are carried out. The averages of the posterior 

statistics of input parameters obtained from these 10 runs are taken as the final results. The conditional 

probability p0 = 0.1 is chosen, and the number of samples at each level (Nl) is determined through parameter 

sensitivity analysis. Figure 3(a) and (b) compare the posterior means and standard deviations of su1, su2 and su3 
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along the vertical direction (x = 15.25) associated with Nl = 1000, 2000 and 4000, respectively. The prior means 

and standard deviations are also plotted in Figure 3 for comparison. It can be observed that the Nl also has an 

important effect on the posterior means and standard deviations of su1, su2 and su3. Nevertheless, the posterior 

means and standard deviations of su1, su2 and su3 gradually converge as Nl increases. To balance the 

computational accuracy and efficiency, Nl = 2000 is chosen. After incorporating the field observations, the 

random fields of su1, su2 and su3 are no longer stationary since the posterior means and standard deviations vary 

distinctly along different spatial locations. As seen from Figure 3, the means and standard deviations of su1 and 

su3 are modified more noticeably than those of su2. It indicates the undrained shear strengths underlying the first 

and third clay layers affect the slope stability more significantly in comparison to that underlying the second clay 

layer.  
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Figure 3.  Comparison of prior and posterior statics of undrained shear strengths along the vertical direction (x = 15.25 m). 

 

Figure 4(a) and (b) depict the estimated posterior means ( m ¢¢ ) and standard deviations (s ¢¢ ) of su1, su2 and 

su3 within the slope profile. The dark and light shaded regions indicate areas of high and small values, 

respectively. After incorporating the observed slope failure information, the obtained random fields of su1, su2 

and su3 are no longer stationary. Based on the posterior means of su1, su2 and su3, the FS calculated using ordinary 

method of slices is 1.18, which matches with the field observation of slope failure within an allowable model 

error range. In addition, the statistics of the undrained shear strengths at the locations around the slip surface are 

updated the most and the updating weakens gradually for the locations away from the slip surface (see Figure 4). 
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Figure 4.  Posterior means and standard deviations of undrained shear strengths within the slope profile. 

 

4 Conclusions 

 

This paper proposes an efficient probabilistic back analysis approach of slopes for learning the probability 

distributions of spatially varying soil properties. The effectiveness of the proposed approach has been 

demonstrated by a real slope example. The proposed approach can well infer the posterior distributions of 

spatially variable soil properties. Unlike the original BUS approach, the proposed approach does not require 

evaluating the likelihood multiplier in advance. A stopping criterion for subset simulation is also developed. 

With the aid of the developed stopping criterion, the proposed approach can obtain failure samples that 

invariably follow the target posterior distributions more conveniently. The effectiveness of the stopping criterion 
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can be validated through the complementary cumulative distribution function (CCDF) of driving variable. The 

field observations and inherent spatial variation has an important influence on learning the probability 

distributions of soil properties. Once the field observations as well as inherent spatial variation are incorporated 

into Bayesian updating, the obtained random fields of soil properties are no longer stationary. To promote the 

application of the proposed approach in engineering practice, a user-friendly code that can be easily integrated to 

standalone numerical codes needs to be developed for reliability-based design of slopes. 

 
Acknowledgments 

 

This work was supported by the National Natural Science Foundation of China (Project No. 41867036, 51679117, U1765207) 

and Natural Science Foundation of Jiangxi Province (Project No. 2018ACB21017, 20181ACB20008). The financial supports 

are gratefully acknowledged. 

 

References 

 

Ang, H.S. and Tang, W.H. (2007). Probability Concepts in Engineering: Emphasis on Applications to Civil and 

Environmental Engineering, Vol. 1. 2nd edition, John Wiley and Sons, New York.  

Au, S.K. and Beck, J.L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. 

Probabilistic Engineering Mechanics, 16(4), 263-277. 

Betz, W., Papaioannou, I., Beck, J.L., and Straub, D. (2018). Bayesian inference with subset simulation: strategies and 

improvements. Computer Methods in Applied Mechanics and Engineering, 331, 72-93.  

Ching, J. and Wang, J.S. (2016). Application of the transitional Markov chain Monte Carlo algorithm to probabilistic site 

characterization. Engineering Geology, 203, 151-167. 

Chowdhury, R.N. and Xu, D.W. (1995). Geotechnical system reliability of slopes. Reliability Engineering and System Safety, 

47(3), 141-151.  

Christian, J.T., Ladd, C.C., and Baecher, G.B. (1994). Reliability applied to slope stability analysis. Journal of Geotechnical 

Engineering, 120(12), 2180-2207. 

DiazDelaO, F.A., Garbuno-Inigo, A., Au, S.K., and Yoshida, I. (2017). Bayesian updating and model class selection with 

Subset Simulation. Computer Methods in Applied Mechanics and Engineering, 317, 1102-1121. 

Duncan, J.M. (1999). The use of back analysis to reduce slope failure risk. Civil Engineering Practice, 14(1), 75-91. 

Ering, P. and Sivakumar-Babu, G.L. (2016). Probabilistic back analysis of rainfall induced landslide - A case study of Malin 

landslide, India. Engineering Geology, 208, 154-164. 

Ering, P. and Sivakumar-Babu, G.L. (2017). A Bayesian framework for updating model parameters while considering spatial 

variability. Georisk, 11(4), 285-298. 

Gilbert, R.B., Wright, S.G., and Liedtke, E. (1998). Uncertainty in back analysis of slopes: Kettleman Hills case history. 

Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1167-1176.  

Huang, J., Zheng, D., Li, D.Q., Kelly, R., and Sloan, S.W. (2018). Probabilistic characterization of two-dimensional soil 

profile by integrating cone penetration test (CPT) with multi-channel analysis of surface wave (MASW) data. Canadian 

Geotechnical Journal, 55, 1168-1181. 

Ireland, H.O. (1954). Stability analysis of the Congress Street open cut in Chicago. Géotechnique, 4(4), 163-168. 

Jiang, S.H. and Huang, J. (2016). Efficient slope reliability analysis at low-probability levels in spatially variable soils. 

Computers and Geotechnics, 75, 18-27. 

Jiang, S.H., Papaioannou, I., and Straub, D. (2018). Bayesian updating of slope reliability in spatially variable soils with in-

situ measurements. Engineering Geology, 239, 310-320. 

Li, D.Q., Yang, Z.Y., Cao, Z.J., and Zhang, L.M. (2019). Area failure probability method for slope system failure risk 

assessment. Computers and Geotechnics, 107, 36-44.  

Miranda, T., Correia, A.G., and Sousa, L.R.E. (2009). Bayesian methodology for updating geomechanical parameters and 

uncertainty quantification. International Journal of Rock Mechanics and Mining Sciences, 46(7), 1144-1153. 

Papaioannou, I. and Straub, D. (2012). Reliability updating in geotechnical engineering including spatial variability of soil. 

Computers and Geotechnics, 42, 44-51. 

Phoon, K.K. and Kulhawy, F.H. (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 

612-624. 

Straub, D. and Papaioannou, I. (2015). Bayesian updating with structural reliability methods. Journal of Engineering 

Mechanics, 141(3), 04014134. 

Wang, L., Hwang, J.H., Luo, Z., Juang, C.H., and Xiao, J.H. (2013). Probabilistic back analysis of slope failure - A case 

study in Taiwan. Computers and Geotechnics, 51, 12-23. 

Yang, H.Q., Zhang, L., and Li, D.Q. (2018). Efficient method for probabilistic estimation of spatially varied hydraulic 

properties in a soil slope based on field responses: A Bayesian approach. Computers and Geotechnics, 102, 262-272. 

Zhang, J., Tang, W.H., and Zhang, L.M. (2010). Efficient probabilistic back-analysis of slope stability model parameters. 

Journal of Geotechnical and Geoenvironmental Engineering, 136(1), 99-109. 

Zhang, L.L., Zhang, J., Zhang, L.M., and Tang, W.H. (2010). Back analysis of slope failure with Markov chain Monte Carlo 

simulation. Computers and Geotechnics, 37(7), 905-912. 

 


