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Abstract: Statistics, such as mean, standard deviation (SD), cross-correlation coefficient of/between geotechnical properties 

are commonly used in geotechnical design and analysis, especially in the probability-based design or analysis. Accurate 

estimation of these statistics generally requires numerous measurements, which are usually not available in geotechnical 

engineering practice due to time and budget constraints. In such cases, the estimated statistics might not be accurate but 

contain significant statistical uncertainty. As the statistical uncertainty in estimated statistics would propagate to subsequent 

design or analysis and might lead to undesirable results, quantification of the uncertainty in estimated statistics is important. 

Quantification of the statistical uncertainty in the estimated mean, SD, cross-correlation is a well-known topic in statistics, 

and it is usually performed analytically under some assumptions, such as the assumption that measurement data are 

independent and identically distributed with a Gaussian distribution. It is worth noting that, however, the geotechnical 

properties exhibit auto-correlation and the independence assumption is often invalid. In addition, geotechnical properties at a 

specific site may not follow a Gaussian distribution due to the unique geological formation process that soils at the site have 

undergone. As a result, the methods based on the assumptions above may not be applicable to quantify the statistical 

uncertainty in the estimated mean, SD and cross-correlation. This paper aims to address this problem using a Bayesian 

compressive sampling (BCS)-based method. The proposed method not only considers the spatial auto-correlation for a 

geotechnical property but also simultaneously considers the cross-correlation among different properties. Cone penetration 

test (CPT) data from a real site are used to illustrate the proposed method. The results show that the proposed method 

performs reasonably well. 

 

Keywords: Bootstrapping; Bayesian compressive sampling/sensing (BCS); uncertainty quantification; geotechnical 

characterization; reliability-based design or analysis 

 

1 Introduction 

 

Statistics, such as mean, standard deviation (SD), and cross-correlation of/between geotechnical properties are 

commonly used in geotechnical design and analysis, especially in probability-based design or analysis (e.g., 

Baecher and Christian 2003; Phoon 2008). Accurate estimation of these statistics generally requires numerous 

measurements. In geotechnical engineering practice, however, the number of measurements collected from a 

specific site is often sparse and limited, due to time and budget constraints (e.g., Phoon 2016; Wang and Zhao 

2016&2017). In such cases, the estimated statistics might not be accurate but contain significant statistical 

uncertainty. As the statistical uncertainty in the estimated statistics would propagate to subsequent design or 

analysis and might lead to undesirable results, quantification of the uncertainty in these commonly used statistics 

is important (e.g., Luo et al. 2013). 

Quantification of uncertainty in estimated mean, SD and cross-correlation is a well-known topic in statistics 

(e.g., Kenney and Keeping 1951), which is usually performed analytically under some assumptions, such as the 

assumption that measurement data are independent and identically distributed with a Gaussian distribution. It is 

worth noting that, however, geotechnical properties exhibit auto-correlation and independence assumption is 

often not valid (e.g., Baecher and Christian 2003). In addition, geotechnical properties at a specific site may not 

follow a Gaussian distribution due to the unique geological formation process that soils at the site have 

undergone (e.g., Wang et al. 2015; Phoon 2016). As a result, the methods based on independent or Gaussian 

assumptions may not be applicable to quantify statistical uncertainty in the estimated statistics. 

In addition to analytical methods, other methods are also available to quantify the statistical uncertainty 

associated with an estimator (e.g., mean), such as the bootstrap method initially developed by Efron and 

Tibshirani (1993). The basic idea of the bootstrap method is to assign accuracy of an estimator based on a 

repeated sampling of the available measurements. This method has been used in geotechnical engineering to 

quantify the statistical uncertainty of mean and SD of some soil parameters, such as normalized undrained shear 

strength when analyzing serviceability for a braced excavation (e.g., Luo et al. 2013). Although the bootstrap 

method bypasses the assumption of distribution for measurements (e.g., Efron and Tibshirani 1993), the spatial 
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auto-correlation embedded in the measurements are not considered. Therefore, it leads to a problem of how to 

properly quantify the statistical uncertainty in the estimated statistics for geotechnical properties when estimated 

from sparse measurements, with the consideration of the spatial auto-correlation of geotechnical properties. 

This paper aims to address this problem using a Bayesian compressive sampling (BCS)-based method (e.g., 

Zhao and Wang 2018). Comparing to Zhao and Wang (2018), where simulation of cross-correlated random field 

samples is of interest, the method in this paper aims to investigate its capability of quantifying statistical 

uncertainty in the mean and SD of geotechnical properties from sparse measurements, with explicit consideration 

of both the spatial auto-correlation for a geotechnical property and the consideration of the cross-correlation 

among different properties. In addition, the proposed method bypasses the assumption of probability distribution 

for the available measurements. After this introduction, the method is first developed based on BCS. Then, it is 

illustrated using a set of real cone penetration test (CPT) data. 

 

2 Bayesian Compressive Sampling-Based Bootstrap Method 

 

Bayesian compressive sampling/sensing (BCS) is a probabilistic version of compressive sampling/sensing (CS) 

to reconstruct a signal (e.g., soil property profile) f, a column vector with a length of N, from its partial 

measurements (e.g., Wang and Zhao 2017; Zhao et al. 2018). The partial measurements are denoted as a column 

vector y with a length of M, and M<<N. In the context of BCS or CS, f can be concisely represented by a limited 

number of basis functions (e.g., wavelet Daubechies 16) in different orders. In math, f = Bω. B is an N×N 

orthonormal matrix, columns of which represent the basis functions (e.g., wavelet Daubechies 16) in different 

orders. ω is a column vector with a length of N, representing the weights corresponding to columns of B, and 

most elements of ω are negligible except several (S<<N) non-trivial ones. Therefore, a signal of interest can be 

reconstructed if the non-trivial elements of ω can be estimated using sparse measurements y. The relation 

between ω and y is formulated as ωωfy AΨBΨ === . ΨBA = , where Ψ  is a measurement matrix, 

reflecting the locations of y in f. Given ωy A= , the non-trivial elements in ω can be estimated by some 

deterministic or Bayesian methods (e.g., Wang and Zhao 2016&2017). The estimated weight vector is denoted 

as sω , which has the same length as ω. Note that all elements of sω  are set to zero except the S non-trivial ones. 

Once sω  is obtained, the reconstructed signal f̂  can be derived as sωf B=ˆ . 

Since sω  is estimated from sparse measurements y, it may be inaccurate and contain significant statistical 

uncertainty. The uncertainty associated with sω  is quantified by its probability density function (PDF), which 

has been shown to follow a multivariate Student’s t distribution with 2cn degree of freedom, a mean vector of 

sω
�  and covariance matrix 

sω
COV . 

sω
�  and 

sω
COV  are expressed as (Wang and Zhao 2017): 
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where “(∙)T” means transpose operation; H = (ATA+D)-1; cn = M/2+c; dn = d+(
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small non-negative constants (e.g., c = d = 10-4); D = a diagonal matrix with Di,i = αi (i = 1, 2, …, N), which are 

unknown non-negative variables and can be obtained by maximizing the likelihood function of measurements y 

(e.g., Ji et al. 2009; Wang and Zhao 2017; Ching and Phoon 2017): 
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where C = IM×M+AD-1AT. IM×M is an identity matrix with a dimension of M×M. Once the Di,i = αi (i = 1, 2, …, N) 

are determined, 
sω

�  and 
sω

COV  in Eq. (1) can be calculated accordingly. Then, substituting Eq. (1) into 

sωf B=ˆ  leads to statistics of f̂  as below with the definition of mean and covariance matrix: 
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where “E (·)” represents the expectation. 
f
� ˆ  represents the mean of f̂ ; whereas diagonal elements of 

f̂
COV  

quantify the statistical uncertainty in estimating f̂ . Eq. (3) suggests that once sparse measurements y of a 

geotechnical property along a spatial direction are available, the mean and statistical uncertainty associated with 
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the profile of this property can be obtained. Note that the method described above is only applicable to one 

geotechnical property. In geotechnical engineering practice, however, variations of several geotechnical 

properties along a spatial direction may be required. In addition, these geotechnical properties are typically 

multivariate, and correlation exists among different properties (e.g., Ching et al. 2016), such as the cohesion and 

friction angle of soils, uniaxial compressive strength and Young's modulus of rocks, among others (e.g., Wang 

and Aladejare 2016; Wang and Akeju 2016). In such cases, different geotechnical properties should be 

reconstructed simultaneously, which can be done by slightly modifying Eq. (2) as (e.g., Ji et al. 2009): 
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“n” represents the number of different geotechnical properties and it is taken as n = 2 in this paper for derivation 

and illustration convenience. After maximizing Eq. (4), the most probable Di,i = αi (i = 1, 2, …, N) are 

determined. Then, using Eqs. (1) and (3), geotechnical property Q1 and Q2 profile can be obtained readily from 

measurements 
1Q

y  and 
2Qy . Mean and covariance matrices of estimated Q1 and Q2 profile are expressed as 

1Q̂
 , 

1Q̂
COV  and 

2Q̂
� , 

2Q̂
COV , respectively.  

Then, cross-correlated Q1 and Q2 samples may be generated as follows (Zhao and Wang 2018) 
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1RC  and 

2RC  are the correlation matrix corresponding 

to 
1Q̂

COV  and 
2Q̂

COV , respectively. In this study, 
1RC =

2RC  due to the usage of Eq. (4) (e.g., Zhao and Wang 

2018). This suggests that the autocorrelation structure for different soil properties in this study is taken as the 

same. This may be justified by noting that the autocorrelation of soil properties is the result of the spatially 

varying constitutive nature of the soil over space (Fenton and Griffiths 2003). S

Q12
ˆξ  represent a series of 

uncorrelated random variables with zero mean and unit variances, such as standard Gaussian random variables. 

ρ12 is the cross-correlation between Q1 and Q2, which may be estimated as (e.g., Ang and Tang 2007) 
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where 
1Qm  and 

2Qm  represent the mean of 
1Qy  and 

2Qy , respectively. 
iQy ,1
 and 

iQy ,2
 are the i-th element of 

1Qy  and 
2Qy , respectively. 

Given Eq. (5), a large number NB of cross-correlated Q1 and Q2 samples can be generated readily by 

realizing NB sets of S

Q12
ˆξ , i.e., 

S

Q
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ξ
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the sampling distributions and statistics (e.g., 95% confidence interval, CI) can be obtained, which reflect the 

statistical uncertainty in the estimated mean and SD of Q1 from 
1Qy . A similar procedure can be performed to 

quantify the statistical uncertainty in the estimated mean and SD of Q2 and cross-correlation between Q1 and Q2. 

Note that the method proposed in this study is essentially a variant of bootstrap method, and it automatically 

preserves the spatial auto-correlation of Q1 and Q2 due to the reconstruction by BCS and explicitly considers the 

cross-correlation between Q1 and Q2. In addition, there is no assumption of probability distribution made on the 

measurements 
1Qy  and 

2Qy . Therefore, all issues mentioned in Section 1 are reasonably addressed by the 

proposed method. 

 

3 Illustrative Example 

 

In this section, the proposed method is illustrated using a set of non-stationary cone penetration test (CPT) data, 

i.e., tip resistance qc data, and sleeve friction fs data. The CPT was performed in a lower clay layer at a site in 

Texas, USA (e.g., Stuedlein et al. 2012), and the data was downloaded from the website of TC304 databases 

(http://140.112.12.21/issmge/tc304.htm?=6). The lower clay layer varies from a depth of around 4.5m to a depth 

of around 15.3m. Both the qc and fs data are recorded at an interval of 0.02m. In this example, 512 (qc, fs) data 

pairs, i.e., the solid lines in Figure 1a&1b, which vary from a depth of 5m to a depth of 15.22m, are adopted for 

comparison and validation. M = 11 measurement data pairs extracted from the solid lines are taken as input for 

the proposed method, and they are represented by open circles in Figure 1a&1b. It is emphasized that CPT data 

are used in this study because CPT data are recorded with a high resolution and are almost continuous. In 

addition, qc and fs are somehow cross-correlated. Therefore, CPT qc and fs data can be used to explore the 

efficiency of the proposed method. 
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Figure 1.  Original qc/fs profile and sparse data. 
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Figure 2.  BCS-based samples of qc/fs profiles. 

 
Table 1.  95% CI of mean and SD of qc and fs from the proposed method using M = 11 measurements. 

 

 Mean SD 

 
True 

95% confidence interval (CI) 
True 

95% confidence interval (CI) 

 The proposed method Bootstrapping The proposed method Bootstrapping 

qc 1.94 [1.74, 2.01] (0.27) [1.67, 2.13] (0.46) 0.41 [0.30, 0.55] (0.25) [0.24, 0.51] (0.27) 

fs 0.10 [0.088, 0.105] (0.017) [0.084, 0.108] (0.024) 0.02 [0.015, 0.029] (0.014) [0.007, 0.034] (0.027) 

# Note that the value in the bracket (·) represents the length of the corresponding 95% CI. 

 

3.1    Mean and SD 

In this example, qc is taken as Q1 while fs is taken as Q2. Then, given the sparse measurements on qc and fs, i.e., 

the open circles in Figure 1a&1b, a large number (e.g., NB = 1000) of qc and fs profile samples can be generated, 

two of which are shown in Figure 2a&b. Subsequently, following the procedure discussed in the last section, the 

NB = 1000 mean and SD of qc and fs can be calculated accordingly. Using the NB = 1000 mean and SD, the 

histograms can be constructed. For example, Figure 3a plots the histogram of the mean of qc (i.e., !qc) and 

summarizes its mean and SD. For comparison, Figure 3a also includes the true mean of the original qc profile. 

Figure 3a shows that the mean of the NB !qc is 1.87, which only has a relative difference of 3.6% when compared 

with that of the original qc profile. In addition, using the NB = 1000 values of !qc, its 95% CI can be obtained. 

The 95% CI of !qc is constructed as the range between the 2.5th and 97.5th percentile of the NB = 1000 !qc values, 

which is sorted in ascending order. For clear presentation, the 95% CI of !qc is summarized in Table 1, which 

shows that the 95% CI of !qc covers the true mean of the original qc profile. The consistency between the mean 

of !qc obtained from M = 11 measurements using the proposed method and the true mean of the original qc profile 

demonstrates that the proposed method works reasonably well. This point is further supported by comparing the 
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statistics of SD of qc and the true SD of the original qc profile, which is summarized in Figure 3b and Table 1. 

Observations similar to the qc case are obtained in the fs case (See Figure 4 and Table 1), which once again 

demonstrates that the proposed method is efficient in quantifying the statistical uncertainty associated with the 

estimated mean and SD of geotechnical properties even only sparse measurements are available. 
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Figure 4.  Histogram of mean and SD of fs, i.e.,  fs and σfs. 

 

3.2    Auto-correlation and cross-correlation 

Note that the proposed method is able to preserve the auto-correlation embedded in the geotechnical properties, 

with explicit consideration of the cross-correlation amongst different properties, which is investigated in this 

subsection. The auto-correlation of a geotechnical property profile may be quantified by the semi-variogram (SV) 

of the profile (e.g., Baecher and Christian 2003). For example, Figure 5a shows the SV of the original qc profile 

by a bold solid line. Similarly, the SV for each of the NB = 1000 qc sample is shown by a gray line, ten of which 

are shown in Figure 5a. This leads to 1000 gray lines, using which the average and 95% CI of SV at each lag 

distance are calculated and shown in Figure 5a by a dashed line and two dotted lines, respectively. Figure 5a 

shows that the dashed line is consistent with the bold solid line, and the bold solid line falls within the 95% CI 

defined by the dotted lines. A similar observation can be obtained in Figure 5b, where the SV for fs samples is 

explored. These observations suggest that the auto-correlation in the original qc and fs profile is statistically 

preserved. In addition, the cross-correlation coefficient ρqc,fs between each qc and fs pair is calculated, leading to 

NB = 1000 ρqc,fs. Figure 5c plots the histogram of ρqc,fs, and it also includes the ρqc,fs estimated directly from sparse 

measurements on qc, fs using Eq. (6). Figure 5c shows that the mean of NB ρqc,fs is identical to the one estimated 

using Eq. (6), which indicates that the cross-correlation between qc and fs is preserved. In addition, the proposed 

method is able to quantify the statistical uncertainty associated the estimated ρqc,fs, which is 0.11 in terms of SD. 
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Figure 5. (a) and (b) for semivariogram of NB = 1000 qc and fs samples, respectively, and (c) for a histogram of cross-

correlation coefficient between qc and fs samples 

 

3.3    Comparison with commonly used bootstrap methods 

In this subsection, the performance of the proposed method is compared with the commonly used bootstrap 

method (e.g., Efron and Tibshirani 1993). Consider, for example, the same set of measurements in Figure 1. 

Then, the statistics of mean and SD of qc and fs can be obtained, which are summarized in Table 1. Table 1 

shows that the 95% CI obtained from the bootstrap method also covers the true mean and SD of the original qc 

and fs profile, which is similar to that shown in the proposed method. However, the length of the 95% CI in the 

bootstrap method is significantly larger than that in the proposed method, as shown in Table. Consider, for 

example, the length of the 95% CI of  qc. The length in the bootstrap method is calculated 2.13-1.67 = 0.46, 

which is 70% larger than the one in the proposed method (i.e., 2.01-1.74 = 0.27). Similar observations can also 
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be obtained for other estimators, such as the SD of qc, mean and SD of fs. This implies that the statistical 

uncertainty quantified by the proposed method is smaller than that by the commonly used bootstrap method (e.g., 

Efron and Tibshirani 1993). This may be attributed to the fact that auto-correlation of geotechnical properties are 

preserved in the method proposed in this paper. 

 

4 Summary and Conclusions 

 
In this paper, a Bayesian compressive sampling-based method was proposed to quantify the statistical 

uncertainty associated with mean, standard deviation and cross-correlation of geotechnical properties from 

sparse measurements. The proposed method automatically preserves the spatial auto-correlation of geotechnical 

properties, with explicit consideration of cross-correlation among different geotechnical properties. Furthermore, 

the assumption of probability distribution for measurements, which are often required in analytical methods is 

not needed in the proposed method. In this paper, equations were developed and the method was illustrated using 

a set of real CPT data. The results showed that the quantified statistical uncertainty associated with the mean, SD 

and cross-correlation is reasonable. In addition, the proposed method was compared to commonly used bootstrap 

methods, and the results showed that the statistical uncertainty quantified by the proposed method is smaller than 

that in the bootstrap method, since the auto-correlation is explicitly considered in the proposed method. 
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