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Abstract: Accurate prediction of the occurrence of landslides triggered by rainfall can be challenging due to the uncertainties 

commonly associated with geotechnical, hydrological and climate parameters controlling the stability of slopes. Uncertainties 

may arise due to lack of knowledge (e.g., lack of geotechnical investigations) or the inherent natural variability (e.g., 

uncertain rainfall patterns) linked to these parameters. This work examines the potential of reducing uncertainties associated 

with rainfall-induced landslides by learning from observations of slope performances. The process of reducing the 

uncertainties is formalized by adopting the Bayesian updating framework. The performance of the implemented prediction 

models and the Bayesian updating framework is evaluated on the rainfall-induced landslides that occurred in 2011 in the 

Kvam area of central Norway.  Slope failure or survival of a given rainfall event introduce additional information that can be 

utilized to reduce uncertainties associated with the assessment of rainfall-induced landslides in a certain area. Reducing 

uncertainties with site-specific observations of slope performance has a potential to increase the capacity of existing models 

to provide localized and more reliable predictions of rainfall-induced landslides. 
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1 Introduction 

 

One of the main challenges in accurate spatial and temporal predictions of the occurrence of landslides triggered 

by rainfall on local scales are uncertainties commonly associated with geotechnical, hydrological and 

meteorological parameters controlling the stability of slopes (e.g., Zieher et al. 2017). Uncertainties arise due to 

lack of knowledge (e.g., lack of geotechnical investigations) or the inherent natural variability (e.g., uncertain 

rainfall patterns) linked to these parameters (e.g., Melchiorre & Frattini 2012). The presence of uncertainties 

often hinders the existing advanced geotechnical, hydrological and climate models from providing reliable 

predictions of rainfall-induced landslides. The prediction capacity of these models can be improved by 

developing and implementing approaches to mitigate and reduce uncertainties. Approaches such as gathering 

more information on the uncertain parameters, increasing the measurement accuracy on the instruments, or 

improving the accuracy of the prediction models can assist in reducing uncertainties. Extensive data collection of 

the uncertain yet crucial parameters is not always feasible due to large and remote areas often spanning tens of 

square kilometres (e.g., Melchiorre & Frattini 2012).  

Accordingly, this work makes an attempt to examine an alternative approach in reducing uncertainties 

associated with rainfall-induced landslides by learning from observations of slope performances. Observations of 

slope failure or an intact slope (referred as slope survival hereafter) for a given rainfall event introduce additional 

information that can be utilized to reduce uncertainties associated with the assessment of rainfall-induced 

landslides (e.g., Zhang et al. 2009). Reducing uncertainties with site-specific observations of slope performance 

has a potential to increase the capacity of existing models to provide localized and more reliable predictions of 

rainfall-induced landslides. Additional motivation for the utilization of observations of slope performance to 

mitigate uncertainties originates from the relatively low cost that is required to gather such information in 

comparison to alternative and more conventional methods for collecting data on the uncertain parameters. The 

process of reducing the uncertainties based on information on observed slope performance will be formalized by 

adopting the Bayesian updating framework. The observations of slope performance in this study will be focused 

on slopes surviving the rainfall event that occurred in 2011 in the Kvam area of central Norway.  

 

2 Rainfall Infiltration Model 

 

An analytical solution for rainfall infiltration on a slope terrain is implemented in this study based on the 

infiltration model developed by Iverson (2000). This infiltration model decomposes the time-dependent pressure 

head in a slope , into two components:  
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  (1) 

where  is time;  is soil depth;  is the long-term water pressure head corresponding to prolonged 

infiltration rates, while  is the short-term head response to a rainstorm. In the case of a slope parallel 

groundwater flow,   is defined as a linear function of  with respect to the initial groundwater depth :   

  (2) 

where θ is the slope angle. The initial groundwater levels can be determined based on the long-term precipitation 

rates and the topographic index as shown in Melchiorre and Frattini (2012) in situations when there is a lack of 

field measurements of groundwater levels. The short-term head response is evaluated based on the reduced form 

of the Richards equation that corresponds to wet initial conditions with the saturated coefficient of permeability:  

  (3) 

where  is the maximum hydraulic diffusivity, corresponding to saturated conditions. Solving Eq. (3) with the 

boundary conditions defined in Iverson (2000) leads to the following equations: 

     when     (4a) 

     when      (4b) 

where Iy is the rainfall rate; t* is the normalised time; T* is the normalised duration of the precipitation, while R 

is the response function (Iverson, 2000). These parameters are defined as follows: 

                    (4c)  

where  is an effective hydraulic diffusivity; erfc is the complementary error function. The 

infiltration model by Iverson (2000) is known to provide physically unrealistic high pressures at shallow depths. 

An ad-hoc solution is implemented in the infiltration model by Iverson (2000) to mitigate the problem of high 

pressures by limiting the predicted pressures to hydrostatic conditions defined by  .  

 

3 Slope Stability Model 

 

Stability of an unsaturated slope subjected to a rainfall event is evaluated with the infinite slope model and the 

extended Mohr Coulomb failure criterion for unsaturated soils (e.g., Fredlund et al. 2012). Based on the extended 

Mohr Coulomb failure criterion, the shear strength is defined as follows: 

  (5) 

where τ is the shear strength; c' is the effective cohesion; σ is the total normal stress at the failure plane;  is the 

effective internal friction angle. The expression in Eq. (5), was derived by assuming that the rate of increase in 

shear strength with respect to a change in the matric suction is defined by . The extended Mohr Coulomb 

failure criterion can be integrated in the expression for infinite slope stability to obtain the following expression 

for the minimum factor of safety, , along soil depth :  

  (6) 

where  is a vector of model parameters in Table 1;   is the soil unit weight; 

 is the water unit weight;  is the void ratio;  is the dry unit weight;  if 

 and  otherwise is an approximation of the degree of saturation. The integral in Eq. (6) 

was evaluated numerically by discretizing the integration domain at 100 equally distributed segments along the 

soil depth. 

 

4 Kvam Case Study 

 

The capacity of observations of slope survival of a rainfall event will be examined on the landslides that 

occurred in Kvam area, central Norway, in relation to the rainfall events in June of 2011 as shown in Figure 1. 

The rainfall event is analysed to gain insights in the conditions controlling the occurrence of rainfall-induced 

landslides. These will be a valuable contribution to identifying the relative importance of the different 

hydrological (e.g., groundwater levels) and geotechnical (e.g., strength values) parameters in the initiation of 

rainfall-induced landslides. This study adopts the probabilistic framework to provide a consistent framework to 
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model the uncertainties associated the geotechnical, hydrological and meteorological parameters. The process of 

reducing uncertainties in these parameters is supported by Bayesian updating. Due to lack of field investigations 

and direct measurements from the site, the typical values of selected input parameters are based mainly on 

information available in the literature. It is worth stressing that local conditions and the quaternary geology of 

the Kvam area is reflected in the selected values. Table 1 provides an overview of the probabilistic models 

adopted to model uncertainties associated with different geotechnical and hydrological parameters controlling 

the occurrence of rainfall-induced landslides at the Kvam area.  

 

5 Bayesian Updating 

 

The application of Bayesian updating (e.g., Depina et al. 2017; Straub & Papaioannou 2014) is advantageous 

because it provides a consistent and explicit probabilistic framework to update and reduce uncertainties in the 

geotechnical and hydrological parameters based on additional information on the uncertain parameters. The 

Bayesian framework is robust and can incorporate a wide range of information including direct measurements of 

the uncertain geotechnical and environmental parameters (e.g., measurements of strength parameters or 

groundwater levels) or indirect observations (e.g., slope survival or failure after a rainfall event). Consider an -

dimensional vector of random parameters, , that corresponds to the uncertain parameters in a 

slope stability model subjected to a rainfall event.  is distributed according to a joint probability density 

function (pdf), , where  is a realization of  in the corresponding outcome space, . This study aims to 

utilize observations of a slope performance after a rainfall event to learn about the uncertain parameters 

controlling the occurrence of rainfall-induced landslides. The Bayesian framework can be applied in such 

problems, because it allows one to update a prior model of uncertainties,  , to a posterior probability 

distribution,  , based on observations as follows: 

  (7) 

where  is the likelihood function, proportional to the probability of observing 

certain slope performance for a given value of model parameters. The evaluation of the likelihood function is 

one of the central elements in the Bayesian framework as it relates model predictions to the observation. In the 

case of the Bayesian updating of a slope stability model, the likelihood function relies on a link between an 

observed slope performance and the corresponding model prediction. Let  denote the observed performance, 

while  represents the corresponding model prediction. The observation is defined as slope survival is 

defined as follows: 

  (8) 

where  is the factor of safety of a slope for a given realization of the uncertain parameters at time ;  is 

duration of the rainfall event. Due to measurement or prediction errors, deviations occur between the observation 

and the model prediction, . The distribution of deviations provides a basis for the construction of 

the likelihood function, such that for , , where 

 is the standard normal cumulative density function. Bayesian updating is performed for the Kvam site based 

on the prior distribution of uncertainties in the parameters in Table 1. Sampling from the posterior distribution 

was conducted with the Markov Chain Monte Carlo algorithm developed by Au and Beck (2001). Effects of 

spatial variability were not modelled explicitly, and the single random variable approach was implemented. 
 

 
(a) 

 
(b) 

Figure 1.  (a) Rainfall event in Kvam area from June 9th to 10th 2011, (b) Rainfall-induced landslides following the rainfall 

event in Kvam (https://www.norgeibilder.no/). 
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6 Slope Stability Model 

 

Figure 2 shows the results of the Bayesian updating for the uncertain parameters based on the information on 

slope survival of the rainfall event in 2011 at the Kvam area for a range of slope angle values, 

. The posterior distributions were estimated empirically on 5000 samples from the posterior 

distribution with a non-parametric kernel density estimator (e.g., Wassermann 2006). It is important to note that 

the results of the updating should be interpreted within the context of the implemented slope stability model. 

More detailed analyses accounting for the effects of spatial variability, vegetation, slope morphology, and 

alternative failure modes (e.g., erosion) may provide additional valuable insights not captured with approach 

implemented in this study. From Figure 2 (a) it can be observed that the information on the slope survival of the 

rainfall event has a significant effect on the distribution of the cohesion, c. The posterior distribution has shifted 

to the right with increased values of the mean. The rate of increase of the mean is increasing with the value of the 

slope angle . The observation of slope survival for higher slope angles is considered as a stronger updating 

information than for the shallow slope angles, because the analysed rainfall is more critical for the stability of the 

high slope angles than for the low ones. The effects of updating on the uncertainties associated with   can be 

examined in Figure 2 (b). Similar as the values of c, it can be observed that relatively low values of   are less 

likely in the posterior distribution than in the prior. The posterior distribution has shifted to the right with 

increased values of the mean and reduced variance.  

 
Table 1.  Uncertain geotechnical and hydrogeological parameters at the Kvam site. 

Parameter Distribution Parameters Source 

H [m] Soil thickness Lognormal 
"H=-

2.578·tan(θ)+2.612 
σH=0.271 - 

c 
[kPa] 

Cohesion Lognormal "c=4.0 CoVc=0.3 

Melchiorre and Frattini 

(2012), Lacasse and 

Nadim (1997). 

  [°] Friction angle Normal " =32 CoV =0.1 
Melchiorre and Frattini 

(2012). 

Gs [-] Dry unit weight Normal "Gs=2.7 CoVGs=0.02 
Guan and Fredlund 
(1997). 

e [-] Void ratio Normal "e=0.25 CoVe=0.1 
Lacasse and Nadim 

(1997). 
Hw 

[m] 
Water depth Uniform Hw,min=0 Hw,max=H - 

ks 

[m/s] 
Saturated 
permeability 

Lognormal "ks=5.0·10-6 CoVks=0.25 
Melchiorre and Frattini 
(2012), Janbu (1989). 

D0 

[m2/s] 

Maximum 

diffusivity 
Lognormal "D0=1.0·10-4 CoVD0=0.25 

Melchiorre and Frattini 

(2012). 

ε [-] 
Slope stability 

model error 
Normal !ε=0.0 σε=0.05 

(Duncan & Wright, 

1980) 

 

The effects of updating on the distribution of the soil thickness, H, can be examined in Figure 2 (c). The 

posterior distribution overlaps closely with the prior distribution, with a slight shift to the lower values. The shift 

increases for the relatively high slope angle values, 30°<  <35°. For these slope angles, the posterior distribution 

has slightly reduced values of the mean and a lower variance, which indicates more likely shallower slope 

thicknesses for these slopes. The effects of the updating on the distribution of the water depth, , are presented 

in Figure 2 (d). From Figure 2 (d) it can be observed that slopes surviving the considered rainfall event are likely 

to be associated with deeper initial groundwater levels. This observation is inferred from the higher values of the 

mean of the posterior distribution, when compared to the prior distribution. The updating did not significantly 

affect the remaining uncertain parameters. The posterior distributions of the uncertain parameters controlling the 

occurrence of rainfall-induced landslides can be further used to update reliability estimates of landslide 

occurrence with respect to future rainfall events. Updating the reliability estimates enables more accurate and 

consistent landslide initiation probability and risk estimates thereby contributing to reduce adverse consequences 

on life and property. Future studies will examine the learning process that is continuously being updated by 

multiple sources of information on geotechnical, hydrological and meteorological conditions collected through 

monitoring systems (Depina 2018). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.  Prior and posterior distributions of: (a) c, (b) �, (c) H and (d) Hw. 

 

7 Conclusions 

 

The implemented study examined the potential of utilizing information on the slope survival of a rainfall event to 

update uncertainties associated with geotechnical and hydrological conditions controlling the occurrence of 

rainfall-induced landslides. The updating was implemented within a Bayesian framework, which provides a 

consistent, explicit and robust framework for updating uncertainties with observations. The updating process 

affected significantly the probability density functions of cohesion, friction angle, slope thickness and initial 

groundwater depth. More detailed analyses may provide additional valuable insights not captured with the 

approach implemented in this study. 
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