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Abstract: Land subsidence in peat areas is a known issue in the Netherlands, and it is responsible for damages in housing 

and infrastructure. There is still a lot of uncertainty in predicting this phenomenon and this research aims to improve the 

predictability of subsidence in the Netherlands by using Machine Learning (ML) techniques. A proof-of-concept of this idea 

is presented in detail in this article. We collect publicly available data of cone penetration testing (CPT) in the Netherlands 

along with remote sensing measurements of the subsidence rate. We use three flood protection dikes for this study. The 

predictors of the ML models are CPT measurements, that include cone tip resistance and sleeve friction; and the variable to 

predict (i.e. target) is the subsidence rate. The ML techniques used to predict the subsidence rate include Ridge regression, 

Random Forest (RF) and Gradient Boosting Machines (GBM). Evaluating the prediction accuracy among these methods it is 

found that the GBM gives the lowest average prediction error. Among features used in the prediction models, it is seen that 

the cone tip resistance at certain depths is the parameter that contributes more at predicting the rate of subsidence. This proof-

of-concept case study shows that there is a promising relationship between subsidence rate and cone penetration data.  
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1 Introduction 

 

Land subsidence in peat areas is a known issue in the Netherlands (Figure 1). It is responsible for damages in 

housing and infrastructure. Studied examples in the Netherlands include: the city of Gouda (Willemse 2018), but 

also some railways (Peduto et al. 2018) and sewage systems (Abspoel et al. 2018).  

 

(a) (b) 

 

Figure 1.  Expected subsidence map (when no measures are taken) for the Netherlands, (a) between years 2002 and 2050 (source: 

Deltares), (b) between years 2010 and 2050 (source: pbl.nl). 

 

Subsidence is the downward motion of the earth surface and it involves primary settlement and the 

secondary settlement of the sub-soil, also known as creep. In the Netherlands, the main causes of subsidence are 

as follows: (i) extraction of natural gas, (ii) groundwater changes, due to e.g. water extraction and (iii) loading 

weak grounds with e.g. landfill. Other causes are underground excavation, mining, or tectonic motion. In 
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addition, peat oxidation due to climatic variables such as high temperature and drought can cause land 

subsidence. 

In the Netherlands, land subsidence, increased number of storms and sea level rise force further upgrades to 

the flood control and water management infrastructure. Given the remarkable uncertainty in estimating the 

subsidence rate due to complex behavior of sub-surface materials, and due to importance of dikes in the 

Netherlands, as the main flood protection elements, the research presented in this article aims to improve the 

predictability of subsidence of dikes. To reach that end, we study the usability of Machine Learning (ML) 

techniques.  

 

2 Problem Definition 

 

We aim to provide answer to this question that how in situ testing data and remote sensing data can be used 

together to better predict land subsidence. The motivation behind this effort comes from the following drivers: 

1. Subsidence is a problem that needs more attention, in the Netherlands but also in other countries; 

2. Standardized geotechnical databases are readily available in the Netherlands and will be even more 

complete in the near future. 

3. Subsidence phenomena are not yet totally understood, leading to current modelling be based on many 

(expert-based) assumptions. 

Given these drivers, we look forward to establishing a link between the standardized geotechnical data and the 

subsidence data (obtained from remote sensing methods), by using Machine Learning (ML) algorithms, where 

the geotechnical data is the model predictor and the target is the subsidence rate. 

 

3 Dataset 

 
3.1    Source of the data 

In this study, we aim to predict the rate of subsidence of dikes located at three locations in the provinces of North 

and South Holland (in the Netherlands). The in situ data are cone penetration tests (CPT), associated with each 

dike and obtained from the DinoLoket web portal (www.dinoloket.nl � standardized geo database). The selected 

CPT�s are taken at the crest of the dikes only. This results in 393 CPT�s in total. The spacing between CPT�s 

ranges between 50 and 150 meters for two of the segments (14-1 and 13-8) and 600 meters for the remaining 

dike segment (8-1,8-2). The subsidence map was acquired from the web portal of SkyGEO 

(bodemdalingskaart.nl). The resolution of this map/information is 2 km × 2 km, which is not ideal but serves the 

purpose of this proof-of-concept study. It is understood that a better resolution of the subsidence map will lead to 

a better dataset with more variance in the predicting value or target (rate of subsidence), which in turn might lead 

to a better prediction model. Figure 2 shows the selected locations (dike segments), and the measured rate of 

subsidence of the Netherlands (color map).  

 

 

 

Figure 2.  Current rates of subsidence in the Netherlands (source: bodemdalingskaart.nl). 

 

3.2    Pre-processing 

Preprocessing of the CPT data and the rate of subsidence was necessary to prepare the chosen dataset for 

machine learning (ML). Figure 3 shows the preprocessing workflow. As shown in Figure 3, first, the raw CPT 

data was converted into shapefile format, which is a format for storing the geometric location and attribute 
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information of geographic features. This dataset and the subsidence rate data (uz) were then linked, and a csv file 

was created. This csv file contains the subsidence rate associated with the location of each CPT. Finally, the 

dataset including features extracted from the raw CPT data and the rate of subsidence, was created. The CPT 

features used in this study include cone tip resistance (qc), sleeve friction (fs), friction ratio (Rf = fs/qc) and 

penetration length (z). Given the presence of Rf in the features and its dependence on fs and qc, either qc, fs or Rf 

can be removed, but we have decided to keep them for completeness.  

The CPT data is measured every ~2 cm; however, the total depth of the observations is different per CPT; 

some are greater than others. We set the depth of CPT�s to 30 m. With this threshold, the number of observations 

per physical quantity is 1500 and each of these observations is taken as a predictor of the model. For instance, let 

us take the cone tip resistance qc:qc,0 is referred to as the cone�s tip resistance at the surface and qc, 1500 is the 

cone�s tip resistance at 30 m depth from the surface. This structure applies also to fs, Rf and z. Therefore, the 

preprocessed dataset has 6000 predictors in total, where each row corresponds to one CPT. To solve the issue of 

the difference in depth in the CPT data, we oversample those CPT�s shallower than 30 m. The oversampling is 

carried out by increasing the frequency of data points (of those CPT�s shallower than 30 m), so that every CPT 

has the same amount of data points (necessary for the machine learning). This is achieved by linear interpolation 

of every consecutive CPT points to acquire more samples in between. Conversely, the CPT profiles deeper than 

30m were truncated at the depth 30 m. At the end, the post-processed dataset has 393rows (number of CPT�s) 

and 6001 columns (predictors + target). 

 

 

Figure 3.  Data preprocessing workflow. 

 

3.3    Feature reduction 

Given the number of features, it was decided to experiment with certain feature reduction methods to study the 

effect of raw data (denoted as No feature reduction) and engineered features on the final results. Feature 

reduction increases prediction performance of the ML models. The methods we apply in this study are the 

following: 

1. F-test: A univariate linear regression test was applied to raw features for testing the individual effect of each 

of many regressors. The null hypothesis is independent between target and feature X. The number of features 

selected by this method is 5469. Though, this number of features is not significantly reduced when compared 

with the total number of 6000 features,  

2. Shallow trees: The decision trees always use the most important features to create the first nodes in the tree. 

Therefore, shallow decision trees can be a powerful technique to reduce the number of features in a dataset. 

To account for uncertainties in different algorithms, we use different ensemble of trees such as random forest, 

light Gradient Boost Machine (GBM), eXtreme Gradient Boost (XGBoost) and Categorical Boost (CatBoost) 

for this purpose. We run each of these ML algorithms on the post processed dataset, during several times. 

This allows us to obtain a distribution of importance per feature. From each distribution we take the average 

value. The features selected for modelling are those whose average importance is higher than a limit. That 

limit is defined as the product of a threshold and the mean of all the features� importance. In this study, we 

set the threshold as 1.0. A higher threshold leads to the selection of less features. The number of features 

selected by this method is 717.  

 

4 Machine Learning Algorithms 

 

4.1    Ridge linear regression 

One of the main assumptions of the ordinary least squares (OLS) method is the independence of the predictors. 

When the features are correlated, the OLS estimate becomes highly sensitive to random errors in the prediction 
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which produces a large variance in the outcome. Therefore, the model is not accurate, nor reliable. One way to 

solve this problem is by imposing a penalty on the size of coefficients. This approach, which is called Ridge 

regression (Hoerl and Kennard 1970), makes a linear model to be robust to collinearity among features in the 

dataset. Due to this characteristic, Ridge regression is a more suitable approach for datasets that have hundreds 

of features. The formula used in Ridge regression that minimizes the residual sum of squares between the true 

and predicted values of the target follows: 

 

(1) 

 

where w = (w1, w2,.., wn) is the vector of model coefficients; X is the matrix of predictors; y is the target vector; 

and a ≥ 0 is a coefficient that controls the degree of overfitting. The larger this quantity, the coefficients become 

more robust to collinearity.  

 

4.2    Random forest 

To explain the concept of random forest (Breiman 2001), it is necessary to first introduce the decision trees. A 
decision tree is an algorithm where a set of conditions are imposed from the data. The target variable is then 
predicted based on those rules. In Figure 4, a decision tree built from our dataset is illustrated.  
 

 
 

Figure 4.  Structure of a decision tree. The predicted values in each node is the average of the rate of subsidence of 

the points that belong to each of the rules shown. 

 

In regression problems, a decision tree splits the data into subsets always minimizing the standard deviation. 

Therefore, a feature is selected if it provides a high decrement of variance in the observed data (i.e. not too much 

noise). Because of this, a single decision tree is prone to overfitting. Additionally, a model based on a single 

decision tree is sensitive to different datasets. A solution to overcome these disadvantages is to have an ensemble 

of decision trees. The final prediction is then an average of the outcome of each tree. This is the aim of the 

random forest. First it creates n bootstrapped samples of the train dataset, then for each of these samples it 

creates one decision tree using random features (it always selects those that minimize the variance). In the end, 

the final prediction is the average of the target values that belong to the same set of rules. 

 
4.3    Gradient boost machine  

The boosting methods (Friedman 2001; Chen and Guestrin 2016) use the same principle as the random forest 

explained above. However, the Gradient Boost Machine goes a step forward, because instead of only making an 

average of values to create the prediction, they also include the prediction error at every iteration. This way we 

can improve the prediction. The Gradient Boost Machine is therefore, a very powerful non-parametric method 

that can deal with non-linear relationships in the data. 

 

5 Results and Discussion 

 

Before building the predictive models, the dataset is split into train and test subsets. Instead of selecting the 

observations at random, we make sure that 70% of each dike’s CPT’s randomly fall in the training set. Following 

2 2T
min -

w
a+w X y w
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this, we avoid having more data for a specific dike segment which can make the code more biased towards that 

information. We also fixed the random seed so that the results can be reproducible. In all these analyses, we used 

Python 3.7.1 and the Scikit-learn library (Pedregosa et al. 2011) which contains all the ML methods explained 

here. Random forest and GBM can capture non-linear relationships in the data and they can be interpreted more 

easily than complicated �black-box� models such as deep learning models. However, as mentioned earlier, we 

also build a Ridge model to compare the results between a linear regression approach and ensemble of trees 

methods.  

In Table 1, the error metrics of the experiments that were carried out in this study are shown (i.e. 3 feature 

reduction scenarios and 3 ML models). MdAPE stands for Median Absolute Percentage Error; the RMSE is the 

root mean squared error; R2 is the explained variance of the model and Pearson correlation is the correlation of 

the residuals. Both RMSE and MdAPE measure the accuracy of a model; however, RMSE is used more to 

compare models built from the same dataset while MdAPE is used to compare models from different datasets, 

where the units of the target variable are different or when the predictors used are also different. When the 

explained variance R2 of a model is negative, the model does not fit the data properly and another ML algorithm 

needs to be applied. In Table 1, we see that this is the case for the Ridge regression ML model. In general, Ridge 

regression is easy to interpret; however, the dataset needs to be linearized by using many mathematical 

transformations to obtain a good model. One can claim that the easier an ML method is to interpret; the more 

feature engineering needs to be done on the train data.  

Table 1 shows that the best models (i.e. better error metrics compared to others) are obtained using gradient 

boosting methods (GBM). As explained in the previous section, this result is expected, since boosting methods 

improve the prediction in the leave nodes at every iteration, while random forest only averages them. If we 

compare the error metrics among the GBM models listed in Table 1, we note that the scenario where shallow 

trees are used as feature reduction technique leads to the best model. However, the other models built with GBM 

have a similar prediction performance, thus we can select any of these to further analyze the causes of the rate of 

subsidence in the dikes in the Netherlands. We select the scenario where no feature selection is applied to the 

data. Figure 5 shows the (a) top 10 most important features selected by the GBM model (with no feature 

reduction) together with (b) the residuals plot.  

The feature importance is a percentage and it accounts for the change of the model�s accuracy when a 

variable is excluded. The higher the change in accuracy, the more important the variable is. According to Figure 

5(a), the top 10 most important drivers at predicting the rate of subsidence in the Dutch dikes studied herein is 

the cone tip resistance (qc) at different depths. It was found that features as Rf or fs have an importance close to 

zero. 

  

(a) (b) 

 

Figure 5.  (a) 10 most important features in the selected model. (b) Residuals plot showing the distributions of the real and 

predicted rate of subsidence in the test set. 
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Table 1.  Error metrics in the test set of the experiments that were carried out.  

Highlighted are the models with best prediction performance.1. 

 

Scenario ML model MdAPE (%) RMSE (-) R2 (-) Pearson corr. (-) 

No feature reduction Ridge regression 34.8 4.0 -7.4 0.3 

F test Ridge regression 49.7 5.6 -15.0 0.3 

Shallow trees Ridge regression 38.1 4.6 -9.5 0.4 

No feature reduction Random Forest 12.0 0.9 0.6 0.8 

F test Random Forest 11.8 0.9 0.6 0.8 

Shallow trees Random Forest 10.8 0.8 0.67 0.8 

No feature reduction GBM 4.3 0.8 0.7 0.8 

F test GBM 4.7 0.8 0.7 0.8 

Shallow trees GBM 3.9 0.7 0.8 0.9 

 

6 Conclusions 

 

A proof-of-concept was shown in this article, where we explored the link between in situ testing and remote 

sensing data to predict subsidence rate based on CPT measurements. We collected publicly available data and 

defined a case study (three dike segments). After pre-processing the datasets, three ML techniques were used to 

predict the subsidence rate. The results showed that the Gradient Boosting Machines gave the lowest average 

prediction error of around 4%. In the analyzed case study, it was observed that the cone tip resistance at different 

depths was the parameter that contributed the most at predicting the rate of subsidence. On the other hand, it was 

found that friction ratio or sleeve friction did not play an important role at predicting the rate of subsidence. The 

results of this study showed that it is possible to link CPT data to subsidence rate obtained from satellite remote 

sensing. Furthermore, it can be hypothesized that the link between CPT�s and remote sensing data has the 

potential to also be extended to primary consolidation/settlement or even inversely, to predict a CPT/soil 

layering based on measured settlement. This preliminary study has certainly identified crucial points to a 

successful prediction of subsidence based on ML: data quality and feature engineering. A reliable subsidence 

rate measurement source, with enough resolution is, of course, of high importance; other data such as loading 

will be of relevance in next research steps, especially if one aims to consider primary consolidation. As such, 

further improvements can be carried out in both the data preprocessing and in the modelling. These steps will be 

developed in our future studies.  
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