3D Spatial Modeling of CPT Data for Probabilistic Preliminary Assessment of Potential Pile TIp Damage upon Collision with Boulders




3D Spatial Modeling of CPT Data for Probabilistic Preliminary Assessment of Potential Pile TIp Damage upon Collision with Boulders


Tip damage of monopiles from boulder collisions during installation has emerged as a critical design issue, primarily due to the combination of the widespread use of large-diameter piles and the complexity of the ground conditions at the available sites. Recently, a framework relating potential pile tip damage to cone tip resistance from Cone Penetration Tests (CPTs) has been proposed in the literature. Gaussian processes are powerful stochastic models that enable probabilistic spatial interpolation of soil data at any location within a site. On this basis, this study utilizes sparse CPT data from a site in the North Sea, to first develop an efficient Gaussian process regression model, which is used to derive a three-dimensional (3D) probabilistic predictive map of the cone tip resistance. Assuming deterministic loading conditions and a factual collision with a boulder of pre-defined properties, the cone tip resistance predictive model is subsequently used for a probabilistic preliminary assessment of potential pile tip damage. Results of the analysis are realistic 3D probability maps of potential damage that aim to support engineering judgment and contribute towards cost-effective site investigation planning and offshore wind farm design.



Orestis Zinas; Iason Papaioannou; Ronald Schneider; Pablo Cuellar; Matthias Baessler


5th International Symposium on Frontiers in Offshore Geotechnics (ISFOG2025)



2 - Site characterization, in-situ and laboratory testing, measurement



https://doi.org/10.53243/ISFOG2025-323