When soil particles break, the particle size distribution (PSD) becomes a variable in the same way as other variables like void ratio, soil structure and anisotropy, etc. To consider particle breakage in a constitutive model, we need three key components: (i) quantification of PSD in a realistically simple manner, (ii) evolution law of PSD during particle breakage, and (iii) influences of PSD on other soil properties like strength and stiffness. This paper summarises the latest advances in the first two components, discusses new ways of quantifying PSD effects, and finally presents a new critical state model where the PSD is treated as a variable. In discussing the PSD effects, we focus on the movement of the critical state line (CSL) due to particle breakage. We introduce a new state parameter and a new evolution law of the CSL. We assume that the CSL shifts downwards in the vlnp space with increasing particle breakage under relatively low stresses, but all the CSLs for different PSDs converge to a steady state at high stresses where particle breakage eventually stops and is no longer the main mechanism for soil deformation. The proposed model is compared with other constitutive models in the literature and validated against experimental data, which demonstrates satisfactory performance.
10th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE2023)
1. Constitutive modelling for saturated and unsaturated soils